Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Liu Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4072 Publications

Showing 1171-1180 of 4072 results
09/06/24 | Disrupted developmental signaling induces novel transcriptional states
Patel A, Gonzalez V, Menon T, Shvartsman SY, Burdine R, Avdeeva M
bioRxiv. 2024 Sep 06:. doi: 10.1101/2024.09.05.610903

Signaling pathways induce stereotyped transcriptional changes as stem cells progress into mature cell types during embryogenesis. Signaling perturbations are necessary to discover which genes are responsive or insensitive to pathway activity. However, gene regulation is additionally dependent on cell state-specific factors like chromatin modifications or transcription factor binding. Thus, transcriptional profiles need to be assayed in single cells to identify potentially multiple, distinct perturbation responses among heterogeneous cell states in an embryo. In perturbation studies, comparing heterogeneous transcriptional states among experimental conditions often requires samples to be collected over multiple independent experiments. Datasets produced in such complex experimental designs can be confounded by batch effects. We present Design-Aware Integration of Single Cell ExpEriments (DAISEE), a new algorithm that models perturbation responses in single-cell datasets with a complex experimental design. We demonstrate that DAISEE improves upon a previously available integrative non-negative matrix factorization framework, more efficiently separating perturbation responses from confounding variation. We use DAISEE to integrate newly collected single-cell RNA-sequencing datasets from 5-hour old zebrafish embryos expressing optimized photoswitchable MEK (psMEK), which globally activates the extracellular signal-regulated kinase (ERK), a signaling molecule involved in many cell specification events. psMEK drives some cells that are normally not exposed to ERK signals towards other wild type states and induces novel states expressing a mixture of transcriptional programs, including precociously activated endothelial genes. ERK signaling is therefore capable of introducing profoundly new gene expression states in developing embryos.Significance Statement Signaling perturbations produce heterogeneous transcriptional responses that must be measured at the single-cell level. Data integration techniques allow us to model these responses which, however, can be confounded by batch effects. We present a computational tool (DAISEE) for extracting the common and perturbation-specific features of single-cell datasets representing multiple experimental conditions while achieving efficient batch effect correction. DAISEE outperforms its predecessor and will enable accurate analysis of a broad range of single-cell datasets. DAISEE applied to new single-cell RNA sequencing data from zebrafish embryos shows that gain-of-function signaling perturbations can induce novel states. Our analysis suggests that a wild type endothelial cell-specification program can be activated in abnormal developmental contexts when the extracellular signal-regulated kinase (ERK) pathway is deregulated.

View Publication Page
07/29/21 | Disrupting cortico-cerebellar communication impairs dexterity.
Guo J, Sauerbrei BA, Cohen JD, Mischiati M, Graves AR, Pisanello F, Branson KM, Hantman AW
eLife. 2021 Jul 29;10:. doi: 10.7554/eLife.65906

To control reaching, the nervous system must generate large changes in muscle activation to drive the limb toward the target, and must also make smaller adjustments for precise and accurate behavior. Motor cortex controls the arm through projections to diverse targets across the central nervous system, but it has been challenging to identify the roles of cortical projections to specific targets. Here, we selectively disrupt cortico-cerebellar communication in the mouse by optogenetically stimulating the pontine nuclei in a cued reaching task. This perturbation did not typically block movement initiation, but degraded the precision, accuracy, duration, or success rate of the movement. Correspondingly, cerebellar and cortical activity during movement were largely preserved, but differences in hand velocity between control and stimulation conditions predicted from neural activity were correlated with observed velocity differences. These results suggest that while the total output of motor cortex drives reaching, the cortico-cerebellar loop makes small adjustments that contribute to the successful execution of this dexterous movement.

View Publication Page
Riddiford LabTruman Lab
10/01/97 | Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila.
McNabb SL, Baker JD, Agapite J, Steller H, Riddiford LM, Truman JW
Neuron. 1997 Oct;19(4):813-23

The neuropeptide eclosion hormone (EH) is a key regulator of insect ecdysis. We tested the role of the two EH-producing neurons in Drosophila by using an EH cell-specific enhancer to activate cell death genes reaper and head involution defective to ablate the EH cells. In the EH cell knockout flies, larval and adult ecdyses were disrupted, yet a third of the knockouts emerged as adults, demonstrating that EH has a significant but nonessential role in ecdysis. The EH cell knockouts had discrete behavioral deficits, including slow, uncoordinated eclosion and an insensitivity to ecdysis-triggering hormone. The knockouts lacked the lights-on eclosion response despite having a normal circadian eclosion rhythm. This study represents a novel approach to the dissection of neuropeptide regulation of a complex behavioral program.

View Publication Page
02/09/15 | Disruption of circadian clocks has ramifications for metabolism, brain, and behavior.
Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS
Proceedings of the National Academy of Sciences USA. 2011 Jan 25;108(4):1657-62. doi: 10.1073/pnas.1018375108

Circadian (daily) rhythms are present in almost all plants and animals. In mammals, a brain clock located in the hypothalamic suprachiasmatic nucleus maintains synchrony between environmental light/dark cycles and physiology and behavior. Over the past 100 y, especially with the advent of electric lighting, modern society has resulted in a round-the-clock lifestyle, in which natural connections between rest/activity cycles and environmental light/dark cycles have been degraded or even broken. Instances in which rapid changes to sleep patterns are necessary, such as transmeridian air travel, demonstrate negative effects of acute circadian disruption on physiology and behavior. However, the ramifications of chronic disruption of the circadian clock for mental and physical health are not yet fully understood. By housing mice in 20-h light/dark cycles, incongruous with their endogenous ∼24-h circadian period, we were able to model the effects of chronic circadian disruption noninvasively. Housing in these conditions results in accelerated weight gain and obesity, as well as changes in metabolic hormones. In the brain, circadian-disrupted mice exhibit a loss of dendritic length and decreased complexity of neurons in the prelimbic prefrontal cortex, a brain region important in executive function and emotional control. Disrupted animals show decreases in cognitive flexibility and changes in emotionality consistent with the changes seen in neural architecture. How our findings translate to humans living and working in chronic circadian disruption is unknown, but we believe that this model can provide a foundation to understand how environmental disruption of circadian rhythms impacts the brain, behavior, and physiology.

View Publication Page
07/22/23 | Dissecting Cell Plate Development During Plant Cytokinesis.
Sinclair R, Cox D, Heddleston J, Aaron J, Wait E, Wilkop T, Drakakaki G
Microscopy and Microanalysis. 2023 Jul 22;29(Supplement_1):865. doi: 10.1093/micmic/ozad067.428
Sternson Lab
04/11/02 | Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays.
Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL
Nature. 2002 Apr 11;416(6881):653-7. doi: 10.1038/416653a

Small molecules that alter protein function provide a means to modulate biological networks with temporal resolution. Here we demonstrate a potentially general and scalable method of identifying such molecules by application to a particular protein, Ure2p, which represses the transcription factors Gln3p and Nil1p. By probing a high-density microarray of small molecules generated by diversity-oriented synthesis with fluorescently labelled Ure2p, we performed 3,780 protein-binding assays in parallel and identified several compounds that bind Ure2p. One compound, which we call uretupamine, specifically activates a glucose-sensitive transcriptional pathway downstream of Ure2p. Whole-genome transcription profiling and chemical epistasis demonstrate the remarkable Ure2p specificity of uretupamine and its ability to modulate the glucose-sensitive subset of genes downstream of Ure2p. These results demonstrate that diversity-oriented synthesis and small-molecule microarrays can be used to identify small molecules that bind to a protein of interest, and that these small molecules can regulate specific functions of the protein.

View Publication Page
09/05/17 | Dissection of the Drosophila neuropeptide F circuit using a high-throughput two-choice assay.
Shao L, Saver M, Chung P, Ren Q, Lee T, Kent CF, Heberlein U
Proceedings of the National Academy of Sciences of the United States of America. 2017 Sep 05;114(38):e8091-9. doi: 10.1073/pnas.1710552114

In their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.

View Publication Page
09/07/21 | Dissociable contributions of phasic dopamine activity to reward and prediction.
Pan W, Coddington LT, Dudman JT
Cell Reports. 2021 Sep 07;36(10):109684. doi: 10.1016/j.celrep.2021.109684

Sensory cues that precede reward acquire predictive (expected value) and incentive (drive reward-seeking action) properties. Mesolimbic dopamine neurons' responses to sensory cues correlate with both expected value and reward-seeking action. This has led to the proposal that phasic dopamine responses may be sufficient to inform value-based decisions, elicit actions, and/or induce motivational states; however, causal tests are incomplete. Here, we show that direct dopamine neuron stimulation, both calibrated to physiological and greater intensities, at the time of reward can be sufficient to induce and maintain reward seeking (reinforcing) although replacement of a cue with stimulation is insufficient to induce reward seeking or act as an informative cue. Stimulation of descending cortical inputs, one synapse upstream, are sufficient for reinforcement and cues to future reward. Thus, physiological activation of mesolimbic dopamine neurons can be sufficient for reinforcing properties of reward without being sufficient for the predictive and incentive properties of cues.

View Publication Page
04/10/18 | Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes.
Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N
Cell. 2018 Apr 10;173(5):1280-92. doi: 10.1016/j.cell.2018.03.031

The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.

View Publication Page
08/01/13 | Distance preserving embeddings for general n-dimensional manifolds.
Verma N
Journal of Machine Learning Research. 2013 Aug;14:2415-48