Filter
Associated Lab
- Aguilera Castrejon Lab (1) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (1) Apply Ahrens Lab filter
- Betzig Lab (6) Apply Betzig Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Gonen Lab (1) Apply Gonen Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Lavis Lab (15) Apply Lavis Lab filter
- Lippincott-Schwartz Lab (12) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (61) Apply Liu (Zhe) Lab filter
- O'Shea Lab (2) Apply O'Shea Lab filter
- Podgorski Lab (1) Apply Podgorski Lab filter
- Schreiter Lab (1) Apply Schreiter Lab filter
- Singer Lab (2) Apply Singer Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (1) Apply Svoboda Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Tjian Lab (8) Apply Tjian Lab filter
- Turner Lab (1) Apply Turner Lab filter
Associated Project Team
Publication Date
- 2024 (8) Apply 2024 filter
- 2023 (3) Apply 2023 filter
- 2022 (5) Apply 2022 filter
- 2021 (6) Apply 2021 filter
- 2020 (7) Apply 2020 filter
- 2019 (7) Apply 2019 filter
- 2018 (3) Apply 2018 filter
- 2017 (5) Apply 2017 filter
- 2016 (4) Apply 2016 filter
- 2015 (4) Apply 2015 filter
- 2014 (4) Apply 2014 filter
- 2011 (1) Apply 2011 filter
- 2009 (1) Apply 2009 filter
- 2006 (3) Apply 2006 filter
Type of Publication
61 Publications
Showing 61-61 of 61 resultsHydrogen peroxide (H(2)O(2)) is the major reactive oxygen species (ROS) produced in sperm. High concentrations of H(2)O(2) in sperm induce nuclear DNA fragmentation and lipid peroxidation and result in cell death. The respiratory chain of the mitochondrion is one of the most productive ROS generating systems in sperm, and thus the destruction of ROS in mitochondria is critical for the cell. It was recently reported that H(2)O(2) generated by the respiratory chain of the mitochondrion can be efficiently destroyed by the cytochrome c-mediated electron-leak pathway where the electron of ferrocytochrome c migrates directly to H(2)O(2) instead of to cytochrome c oxidase. In our studies, we found that mouse testis-specific cytochrome c (T-Cc) can catalyze the reduction of H(2)O(2) three times faster than its counterpart in somatic cells (S-Cc) and that the T-Cc heme has the greater resistance to being degraded by H(2)O(2). Together, these findings strongly imply that T-Cc can protect sperm from the damages caused by H(2)O(2). Moreover, the apoptotic activity of T-Cc is three to five times greater than that of S-Cc in a well established apoptosis measurement system using Xenopus egg extract. The dramatically stronger apoptotic activity of T-Cc might be important for the suicide of male germ cells, considered a physiological mechanism that regulates the number of sperm produced and eliminates those with damaged DNA. Thus, it is very likely that T-Cc has evolved to guarantee the biological integrity of sperm produced in mammalian testis.