Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Reiser Lab / Publications
general_search_page-panel_pane_1 | views_panes

6 Publications

Showing 1-6 of 6 results
Your Criteria:
    10/17/23 | A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity.
    Arthur Zhao , Aljoscha Nern , Sanna Koskela , Marisa Dreher , Mert Erginkaya , Connor W Laughland , Henrique DF Ludwig , Alex G Thomson , Judith Hoeller , Ruchi Parekh , Sandro Romani , Davi D Bock , Eugenia Chiappe , Michael B Reiser
    bioRxiv. 2023 Oct 17:. doi: 10.1101/2023.10.16.562634

    Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. Optic flow, the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies. The best-known optic-flow sensitive neurons are the large tangential cells of the dipteran lobula plate, whose visual-motion responses, and to a lesser extent, their morphology, have been explored using single-neuron neurophysiology. Most of these studies have focused on the large, Horizontal and Vertical System neurons, yet the lobula plate houses a much larger set of 'optic-flow' sensitive neurons, many of which have been challenging to unambiguously identify or to reliably target for functional studies. Here we report the comprehensive reconstruction and identification of the Lobula Plate Tangential Neurons in an Electron Microscopy (EM) volume of a whole Drosophila brain. This catalog of 58 LPT neurons (per brain hemisphere) contains many neurons that are described here for the first time and provides a basis for systematic investigation of the circuitry linking self-motion to locomotion control. Leveraging computational anatomy methods, we estimated the visual motion receptive fields of these neurons and compared their tuning to the visual consequence of body rotations and translational movements. We also matched these neurons, in most cases on a one-for-one basis, to stochastically labeled cells in genetic driver lines, to the mirror-symmetric neurons in the same EM brain volume, and to neurons in an additional EM data set. Using cell matches across data sets, we analyzed the integration of optic flow patterns by neurons downstream of the LPTs and find that most central brain neurons establish sharper selectivity for global optic flow patterns than their input neurons. Furthermore, we found that self-motion information extracted from optic flow is processed in distinct regions of the central brain, pointing to diverse foci for the generation of visual behaviors.

    View Publication Page
    11/24/23 | Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila.
    Longden KD, Rogers EM, Nern A, Dionne H, Reiser MB
    Nature Communications. 2023 Nov 24;14(1):7693. doi: 10.1038/s41467-023-43566-8

    Color and motion are used by many species to identify salient objects. They are processed largely independently, but color contributes to motion processing in humans, for example, enabling moving colored objects to be detected when their luminance matches the background. Here, we demonstrate an unexpected, additional contribution of color to motion vision in Drosophila. We show that behavioral ON-motion responses are more sensitive to UV than for OFF-motion, and we identify cellular pathways connecting UV-sensitive R7 photoreceptors to ON and OFF-motion-sensitive T4 and T5 cells, using neurogenetics and calcium imaging. Remarkably, this contribution of color circuitry to motion vision enhances the detection of approaching UV discs, but not green discs with the same chromatic contrast, and we show how this could generalize for systems with ON- and OFF-motion pathways. Our results provide a computational and circuit basis for how color enhances motion vision to favor the detection of saliently colored objects.

    View Publication Page
    11/24/23 | Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila.
    Longden KD, Rogers EM, Nern A, Dionne H, Reiser MB
    Nature Communications. 2023 Nov 24;14(1):7693. doi: 10.1038/s41467-023-43566-8

    Color and motion are used by many species to identify salient objects. They are processed largely independently, but color contributes to motion processing in humans, for example, enabling moving colored objects to be detected when their luminance matches the background. Here, we demonstrate an unexpected, additional contribution of color to motion vision in Drosophila. We show that behavioral ON-motion responses are more sensitive to UV than for OFF-motion, and we identify cellular pathways connecting UV-sensitive R7 photoreceptors to ON and OFF-motion-sensitive T4 and T5 cells, using neurogenetics and calcium imaging. Remarkably, this contribution of color circuitry to motion vision enhances the detection of approaching UV discs, but not green discs with the same chromatic contrast, and we show how this could generalize for systems with ON- and OFF-motion pathways. Our results provide a computational and circuit basis for how color enhances motion vision to favor the detection of saliently colored objects.

    View Publication Page
    03/10/23 | Drosophila antennae are dispensable for gravity orientation
    Nikolay Kladt , Michael B. Reiser
    bioRxiv. 2023 Mar 10:. doi: 10.1101/2023.03.08.531317

    The nearly constant downward force of gravity has powerfully shaped the behaviors of many organisms [1]. Walking flies readily orient against gravity in a behavior termed negative gravitaxis. In Drosophila this behavior is studied by observing the position of flies in vials [24] or simple mazes [59]. These assays have been used to conduct forward-genetic screens [568] and as simple tests of locomotion deficits [1012]. Despite this long history of investigation, the sensory basis of gravitaxis is largely unknown [1]. Recent studies have implicated the antennae as a major mechanosensory input [34], but many details remain unclear. Fly orientation behavior is expected to depend on the direction and amplitude of the gravitational pull, but little is known about the sensitivity of flies to these features of the environment. Here we directly measure the gravity-dependent orientation behavior of flies walking on an adjustable tilted platform, that is inspired by previous insect studies [1316]. In this arena, flies can freely orient with respect to gravity. Our findings indicate that flies are exquisitely sensitive to the direction of gravity’s pull. Surprisingly, this orientation behavior does not require antennal mechanosensory input, suggesting that other sensory structures must be involved.

    View Publication Page
    10/02/24 | Neuronal wiring diagram of an adult brain.
    Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu S, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M, FlyWire Consortium
    Nature. 2024 Oct 02;634(8032):124-138. doi: 10.1038/s41586-024-07558-y

    Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses between 139,255 neurons reconstructed from an adult female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.

    View Publication Page
    06/22/23 | Small-field visual projection neurons detect translational optic flow and support walking control
    Mathew D. Isaacson , Jessica L. M. Eliason , Aljoscha Nern , Edward M. Rogers , Gus K. Lott , Tanya Tabachnik , William J. Rowell , Austin W. Edwards , Wyatt L. Korff , Gerald M. Rubin , Kristin Branson , Michael B. Reiser
    bioRxiv. 2023 Jun 22:. doi: 10.1101/2023.06.21.546024

    Animals rely on visual motion for navigating the world, and research in flies has clarified how neural circuits extract information from moving visual scenes. However, the major pathways connecting these patterns of optic flow to behavior remain poorly understood. Using a high-throughput quantitative assay of visually guided behaviors and genetic neuronal silencing, we discovered a region in Drosophila’s protocerebrum critical for visual motion following. We used neuronal silencing, calcium imaging, and optogenetics to identify a single cell type, LPC1, that innervates this region, detects translational optic flow, and plays a key role in regulating forward walking. Moreover, the population of LPC1s can estimate the travelling direction, such as when gaze direction diverges from body heading. By linking specific cell types and their visual computations to specific behaviors, our findings establish a foundation for understanding how the nervous system uses vision to guide navigation.

    View Publication Page