Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Schreiter Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3 Publications

Showing 1-3 of 3 results
Your Criteria:
    Looger LabSchreiter Lab
    07/01/08 | Crystallization and preliminary x-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2.
    Rodríguez Guilbe MM, Alfaro Malavé EC, Akerboom J, Marvin JS, Looger LL, Schreiter ER
    Acta Crystallographica. Section F, Structural Biology and Crystallization Communications. 2008 Jul 1;64:629-31. doi: 10.1107/S1744309108016059

    Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 A resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1.

    View Publication Page
    05/01/08 | Crystallization and preliminary X-ray characterization of full-length Chlamydomonas reinhardtii centrin.
    Alfaro E, Sosa LD, Sanoguet Z, Pastrana-Ríos B, Schreiter ER
    Acta Crystallographica Section F Structural Biology and Crystallization Communications. 2008 May 1;64(Pt 5):402-4. doi: 10.1107/S1744309108009123

    Chlamydomonas reinhardtii centrin is a member of the EF-hand calcium-binding superfamily. It is found in the basal body complex and is important for flagellar motility. Like other members of the EF-hand family, centrin interacts with and modulates the function of other proteins in a calcium-dependent manner. To understand how C. reinhardtii centrin interacts with its protein targets, it has been crystallized in the presence of the model peptide melittin and X-ray diffraction data have been collected to 2.2 A resolution. The crystals are orthorhombic, with unit-cell parameters a = 52.1, b = 114.4, c = 34.8 A, and are likely to belong to space group P2(1)2(1)2.

    View Publication Page
    02/19/08 | Structural basis of the metal specificity for nickel regulatory protein NikR.
    Phillips CM, Schreiter ER, Guo Y, Wang SC, Zamble DB, Drennan CL
    Biochemistry. 2008 Feb 19;47(7):1938-46. doi: 10.1021/bi702006h

    In the presence of excess nickel, Escherichia coli NikR regulates cellular nickel uptake by suppressing the transcription of the nik operon, which encodes the nickel uptake transporter, NikABCDE. Previously published in vitro studies have shown that NikR is capable of binding a range of divalent transition metal ions in addition to Ni2+, including Co2+, Cu2+, Zn2+, and Cd2+. To understand how the high-affinity nickel binding site of NikR is able to accommodate these other metal ions, and to improve our understanding of NikR's mechanism of binding to DNA, we have determined structures of the metal-binding domain (MBD) of NikR in the apo form and in complex with Cu2+ and Zn2+ ions and compared them with the previously published structures with Ni2+. We observe that Cu2+ ions bind in a manner very similar to that of Ni2+, with a square planar geometry but with longer bond lengths. Crystals grown in the presence of Zn2+ reveal a protein structure similar to that of apo MBD with a disordered alpha3 helix, but with two electron density peaks near the Ni2+ binding site corresponding to two Zn2+ ions. These structural findings along with biochemical data on NikR support a hypothesis that ordering of the alpha3 helix is important for repressor activation.

    View Publication Page