Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
The endoplasmic reticulum (ER) has a complex morphology comprised of stacked sheets, tubules, and three-way junctions, which together function as a platform for protein synthesis of membrane and secretory proteins. Specific ER subdomains are thought to be spatially organized to enable protein synthesis activity, but precisely where these domains are localized is unclear, especially relative to the plethora of organelle interactions taking place on the ER. Here, we use single-molecule tracking of ribosomes and mRNA in combination with simultaneous imaging of ER to assess the sites of membrane protein synthesis on the ER. We found that ribosomes were widely distributed throughout different ER morphologies, but the synthesis of membrane proteins (including Type I, II, and multi-spanning) and an ER luminal protein (Calreticulin) occurred primarily at three-way junctions. Lunapark played a key role in stabilizing transmembrane protein mRNA at three-way junctions. We additionally found that translating mRNAs coding for transmembrane proteins are in the vicinity of lysosomes and translate through a cap-independent but eIF2-dependent mechanism. These results support the idea that discrete ER subdomains co-exist with lysosomes to support specific types of protein synthesis activities, with ER-lysosome interactions playing an important role in the translation of secretome mRNAs.