Main Menu (Mobile)- Block
- Our Research
-
Support Teams
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Integrative Imaging
- Media Prep
- Molecular Genomics
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cell and Tissue Culture
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Fly Facility
- Gene Targeting and Transgenics
- Janelia Experimental Technology
- Integrative Imaging
- Media Prep
- Molecular Genomics
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.