Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

73 Janelia Publications

Showing 11-20 of 73 results
Your Criteria:
    02/16/17 | An unsupervised method for quantifying the behavior of interacting individuals.
    Klibaite U, Berman GJ, Cande J, Stern DL
    Physical Biology. 2017 Feb16;14(1):1609.09345. doi: 10.1088/1478-3975/aa5c50

    Behaviors involving the interaction of multiple individuals are complex and frequently crucial for an animal's survival. These interactions, ranging across sensory modalities, length scales, and time scales, are often subtle and difficult to characterize. Contextual effects on the frequency of behaviors become even more difficult to quantify when physical interaction between animals interferes with conventional data analysis, e.g. due to visual occlusion. We introduce a method for quantifying behavior in fruit fly interaction that combines high-throughput video acquisition and tracking of individuals with recent unsupervised methods for capturing an animal's entire behavioral repertoire. We find behavioral differences between solitary flies and those paired with an individual of the opposite sex, identifying specific behaviors that are affected by social and spatial context. Our pipeline allows for a comprehensive description of the interaction between two individuals using unsupervised machine learning methods, and will be used to answer questions about the depth of complexity and variance in fruit fly courtship.

    View Publication Page
    02/24/25 | An updated catalogue of split-GAL4 driver lines for descending neurons in Drosophila melanogaster
    Zung JL, Namiki S, Meissner GW, Costa M, Eichler K, Stürner T, Jefferis GS, Managan C, FlyLight Project Team , Korff W, Card GM
    bioRxiv. 2025 Feb 24:. doi: 10.1101/2025.02.22.639679

    Descending neurons (DNs) occupy a key position in the sensorimotor hierarchy, conveying signals from the brain to the rest of the body below the neck. In Drosophila melanogaster flies, approximately 480 DN cell types have been described from electron-microscopy image datasets. Genetic access to these cell types is crucial for further investigation of their role in generating behaviour. We previously conducted the first large-scale survey of Drosophila melanogaster DNs, describing 98 unique cell types from light microscopy and generating cell-type-specific split-Gal4 driver lines for 65 of them. Here, we extend our previous work, describing the morphology of 137 additional DN types from light microscopy, bringing the total number DN types identified in light microscopy datasets to 235, or nearly 50%. In addition, we produced 500 new sparse split-Gal4 driver lines and compiled a list of previously published DN lines from the literature for a combined list of 738 split-Gal4 driver lines targeting 171 DN types.

    View Publication Page
    05/19/24 | Analysis of meiotic recombination in Drosophila simulans shows heterozygous inversions do not cause an interchromosomal effect
    Bowen Man , Elizabeth Kim , Alekhya Vadlakonda , David L Stern , Nicole Crown
    Genetics. 2024 May 19:. doi: 10.1093/genetics/iyae084

    Chromosome inversions are of unique importance in the evolution of genomes and species because when heterozygous with a standard arrangement chromosome, they suppress meiotic crossovers within the inversion. In Drosophila species, heterozygous inversions also cause the interchromosomal effect, whereby the presence of a heterozygous inversion induces a dramatic increase in crossover frequencies in the remainder of the genome within a single meiosis. To date, the interchromosomal effect has been studied exclusively in species that also have high frequencies of inversions in wild populations. We took advantage of a recently developed approach for generating inversions in Drosophila simulans, a species that does not have inversions in wild populations, to ask if there is an interchromosomal effect. We used the existing chromosome 3R balancer and generated a new chromosome 2L balancer to assay for the interchromosomal effect genetically and cytologically. We found no evidence of an interchromosomal effect in D. simulans. To gain insight into the underlying mechanistic reasons, we qualitatively analyzed the relationship between meiotic double-strand break formation and synaptonemal complex assembly. We find that the synaptonemal complex is assembled prior to double-strand break formation as in D. melanogaster; however, we show that the synaptonemal complex is assembled prior to localization of the oocyte determination factor Orb, whereas in D. melanogaster, synaptonemal complex formation does not begin until Orb is localized. Together, our data show heterozygous inversions in D. simulans do not induce an interchromosomal effect and that there are differences in the developmental programming of the early stages of meiosis.

    View Publication Page
    02/03/14 | Cellular and behavioral functions of fruitless isoforms in Drosophila courtship.
    von Philipsborn AC, Jörchel S, Tirian L, Demir E, Morita T, Stern DL, Dickson BJ
    Current Biology . 2014 Feb 3;24:242-51. doi: 10.1016/j.cub.2013.12.015

    BACKGROUND: Male-specific products of the fruitless (fru) gene control the development and function of neuronal circuits that underlie male-specific behaviors in Drosophila, including courtship. Alternative splicing generates at least three distinct Fru isoforms, each containing a different zinc-finger domain. Here, we examine the expression and function of each of these isoforms. RESULTS: We show that most fru(+) cells express all three isoforms, yet each isoform has a distinct function in the elaboration of sexually dimorphic circuitry and behavior. The strongest impairment in courtship behavior is observed in fru(C) mutants, which fail to copulate, lack sine song, and do not generate courtship song in the absence of visual stimuli. Cellular dimorphisms in the fru circuit are dependent on Fru(C) rather than other single Fru isoforms. Removal of Fru(C) from the neuronal classes vAB3 or aSP4 leads to cell-autonomous feminization of arborizations and loss of courtship in the dark. CONCLUSIONS: These data map specific aspects of courtship behavior to the level of single fru isoforms and fru(+) cell types-an important step toward elucidating the chain of causality from gene to circuit to behavior.

    View Publication Page
    07/08/19 | Changes throughout a genetic network mask the contribution of Hox gene evolution.
    Liu Y, Ramos-Womack M, Han C, Reilly P, Brackett KL, Rogers W, Williams TM, Andolfatto P, Stern DL, Rebeiz M
    Current Biology. 2019 Jul 08;29(13):2157-66. doi: 10.1016/j.cub.2019.05.074

    Hox genes pattern the anterior-posterior axis of animals and are posited to drive animal body plan evolution, yet their precise role in evolution has been difficult to determine. Here, we identified evolutionary modifications in the Hox gene Abd-Bthat dramatically altered its expression along the body plan of Drosophila santomeaAbd-B is required for pigmentation in Drosophila yakuba, the sister species of D. santomea, and changes to Abd-B expression would be predicted to make large contributions to the loss of body pigmentation in D. santomea. However, manipulating Abd-B expression in current-day D. santomea does not affect pigmentation. We attribute this epistatic interaction to four other genes within the D. santomea pigmentation network, three of which have evolved expression patterns that do not respond to Abd-B. Our results demonstrate how body plans may evolve through small evolutionary steps distributed throughout Hox-regulated networks. Polygenicity and epistasis may hinder efforts to identify genes and mechanisms underlying macroevolutionary traits.

    View Publication Page
    03/01/20 | Characterization of the Genetic Architecture Underlying Eye Size Variation Within Drosophila melanogaster and Drosophila simulans.
    Gaspar P, Arif S, Sumner-Rooney L, Kittelmann M, Bodey AJ, Stern DL, Nunes MD, McGregor AP
    Genes|Genomes|Genetics. 2020 Mar 01;10(3):1005-18. doi: 10.1534/g3.119.400877
    12/14/20 | Cis-regulatory variation in the shavenbaby gene underlies intraspecific phenotypic variation, mirroring interspecific divergence in the same trait.
    Soverna AF, Rodriguez NC, Korgaonkar A, Hasson E, Stern DL, Frankel N
    Evolution. 2020 Dec 14:. doi: 10.1111/evo.14142

    Despite considerable progress in recent decades in dissecting the genetic causes of natural morphological variation, there is limited understanding of how variation within species ultimately contributes to species differences. We have studied patterning of the non-sensory hairs, commonly known as "trichomes," on the dorsal cuticle of first-instar larvae of Drosophila. Most Drosophila species produce a dense lawn of dorsal trichomes, but a subset of these trichomes were lost in D. sechellia and D. ezoana due entirely to regulatory evolution of the shavenbaby (svb) gene. Here, we describe intraspecific variation in dorsal trichome patterns of first-instar larvae of D. virilis that is similar to the trichome pattern variation identified previously between species. We found that a single large effect QTL, which includes svb, explains most of the trichome number difference between two D. virilis strains and that svb expression correlates with the trichome difference between strains. This QTL does not explain the entire difference between strains, implying that additional loci contribute to variation in trichome numbers. Thus, the genetic architecture of intraspecific variation exhibits similarities and differences with interspecific variation that may reflect differences in long-term and short-term evolutionary processes.

    View Publication Page
    05/03/20 | Co-evolving wing spots and mating displays are genetically separable traits in Drosophila.
    Massey JH, Rice GR, Firdaus A, Chen C, Yeh S, Stern DL, Wittkopp PJ
    Evolution. 2020 May 03;74(6):1098-1111. doi: 10.1111/evo.13990

    The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and D. gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior. This article is protected by copyright. All rights reserved.

    View Publication Page
    09/25/21 | Coding sequence-independent homology search identifies highly divergent homopteran putative effector gene family
    Stern D, Han C
    bioRxiv. 2021 Sep 25:. doi: https://doi.org/10.1101/2021.09.24.461719

    Many genomes contain rapidly evolving and highly divergent genes whose homology to genes of known function often cannot be determined from sequence similarity alone. However, coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of rapidly evolving bicycle aphid effector genes identified many putative bicycle homologs in aphids, phylloxerids, and scale insects, whereas sequence similarity search methods yielded few homologs in most aphids and no homologs in phylloxerids and scale insects. Subsequent examination of sequence features and intron locations supported homology assignments. Differential expression studies of newly-identified bicycle homologs, together with prior proteomic studies, support the hypothesis that BICYCLE proteins act as plant effector proteins in many aphid species and perhaps also in phylloxerids and scale insects.

    View Publication Page
    09/07/23 | Combinatorial circuit dynamics orchestrate flexible motor patterns in Drosophila.
    Hiroshi M. Shiozaki , Kaiyu Wang , Joshua L. Lillvis , Min Xu , Barry J. Dickson , David L. Stern
    bioRxiv. 2023 Sep 07:. doi: 10.1101/2022.12.14.520499

    Motor systems flexibly implement diverse motor programs to pattern behavioral sequences, yet their neural underpinnings remain unclear. Here, we investigated the neural circuit mechanisms of flexible courtship behavior in Drosophila. Courting males alternately produce two types of courtship song. By recording calcium signals in the ventral nerve cord (VNC) in behaving flies, we found that different songs are produced by activating overlapping neural populations with distinct motor functions in a combinatorial manner. Recordings from the brain suggest that song is driven by two descending pathways – one defines when to sing and the other specifies what song to sing. Connectomic analysis reveals that these “when” and “what” descending pathways provide structured input to VNC neurons with different motor functions. These results suggest that dynamic changes in the activation patterns of descending pathways drive different combinations of motor modules, thereby flexibly switching between different motor actions.

    View Publication Page