Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

31 Janelia Publications

Showing 1-10 of 31 results
Your Criteria:
    Fetter LabCardona Lab
    02/18/16 | A circuit mechanism for the propagation of waves of muscle contraction in Drosophila.
    Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A, Nose A
    eLife. 2016 Feb 18;5:. doi: 10.7554/eLife.13253

    Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.

    View Publication Page
    07/12/18 | A complete electron microscopy volume of the brain of adult Drosophila melanogaster.
    Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie DE, Torrens O, Price J, Fisher CB, Sharifi N, Calle-Schuler SA, Kmecova L, Ali IJ, Karsh B, Trautman ET, Bogovic JA, Hanslovsky P, Jefferis GS, Kazhdan M, Khairy K
    Cell. 2018 Jul 12;174(3):730-43. doi: 10.1016/j.cell.2018.06.019

    Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience..

    View Publication Page
    Zlatic LabFetter LabBranson LabSimpson LabTruman LabCardona Lab
    04/20/15 | A multilevel multimodal circuit enhances action selection in Drosophila.
    Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M
    Nature. 2015 Apr 20;520(7549):633-9. doi: 10.1038/nature14297

    Natural events present multiple types of sensory cues, each detected by a specialized sensory modality. Combining information from several modalities is essential for the selection of appropriate actions. Key to understanding multimodal computations is determining the structural patterns of multimodal convergence and how these patterns contribute to behaviour. Modalities could converge early, late or at multiple levels in the sensory processing hierarchy. Here we show that combining mechanosensory and nociceptive cues synergistically enhances the selection of the fastest mode of escape locomotion in Drosophila larvae. In an electron microscopy volume that spans the entire insect nervous system, we reconstructed the multisensory circuit supporting the synergy, spanning multiple levels of the sensory processing hierarchy. The wiring diagram revealed a complex multilevel multimodal convergence architecture. Using behavioural and physiological studies, we identified functionally connected circuit nodes that trigger the fastest locomotor mode, and others that facilitate it, and we provide evidence that multiple levels of multimodal integration contribute to escape mode selection. We propose that the multilevel multimodal convergence architecture may be a general feature of multisensory circuits enabling complex input–output functions and selective tuning to ecologically relevant combinations of cues.

    View Publication Page
    08/07/13 | A visual motion detection circuit suggested by Drosophila connectomics.
    Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang L, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB
    Nature. 2013 Aug 7;500(7461):175–81. doi: doi:10.1038/nature12450

    Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.

    View Publication Page
    Fetter Lab
    08/01/10 | Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using PALM.
    Brown TA, Fetter RD, Tkachuk AN, Clayton DA
    Methods. 2010 Aug;51(4):458-63. doi: 10.1016/j.ymeth.2010.01.001

    Mitochondria are difficult targets for microscopy because of their small size and highly compartmentalized, membranous interior. Super-resolution fluorescence microscopy methods have recently been developed that exceed the historical limits of optical imaging. Here we outline considerations and techniques in preparing to image the relative location of mitochondrial proteins using photoactivated localization microscopy (PALM). PALM and similar methods have the capacity to dramatically increase our ability to image proteins within mitochondria, and to expand our knowledge of the location of macromolecules beyond the current limits of immunoEM.

    View Publication Page
    Fetter LabCardona Lab
    04/12/16 | Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.
    MacNamee SE, Liu KE, Gerhard S, Tran CT, Fetter RD, Cardona A, Tolbert LP, Oland LA
    The Journal of Comparative Neurology. 2016 Apr 12;524(10):1979-98. doi: 10.1002/cne.24016

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic pre-motor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via Eaat1, and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory post-synaptic currents in motor neurons. The neuronal synapses were always located within a micron of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. This article is protected by copyright. All rights reserved.

    View Publication Page
    Zlatic LabCardona LabFetter LabTruman LabScientific Computing Software
    10/05/16 | Competitive disinhibition mediates behavioral choice and sequences in Drosophila.
    Jovanic T, Schneider-Mizell CM, Shao M, Masson J, Denisov G, Fetter RD, Mensh BD, Truman JW, Cardona A, Zlatic M
    Cell. 2016 Oct 5;167(3):858-70. doi: 10.1016/j.cell.2016.09.009

    Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus. Together, these studies reveal that, early in sensory processing, (1) reciprocally connected feedforward inhibitory interneurons implement behavioral choice, (2) local feedback disinhibition provides positive feedback that consolidates and maintains the chosen behavior, and (3) lateral disinhibition promotes sequence transitions. The combination of these interconnected circuit motifs can implement both behavior selection and the serial organization of behaviors into a sequence.

    View Publication Page
    Fetter LabCardona Lab
    10/23/17 | Conserved neural circuit structure across Drosophila larva development revealed by comparative connectomics.
    Gerhard S, Andrade I, Fetter RD, Cardona A, Schneider-Mizell CM
    eLife. 2017 Oct 23;6:e29089. doi: 10.7554/eLife.29089

    During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. In a previous paper (Schneider-Mizell et al., 2016), we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila. Here, we examined how neuronal morphology and connectivity change between 1st instar and 3rd instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell-type specific connectivity changes that preserved the fraction of total synaptic input associated with each presynaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.

    View Publication Page
    Fetter LabTruman LabCardona Lab
    12/11/18 | Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a feeding connectome.
    Miroschnikow A, Schlegel P, Schoofs A, Hueckesfeld S, Li F, Schneider-Mizell CM, Fetter RD, Truman JW, Cardona A, Pankratz MJ
    eLife. 2018 Dec 11;7:. doi: 10.7554/eLife.40247

    We reconstructed, from a whole CNS EM volume, the synaptic map of input and output neurons that underlie food intake behavior of larvae. Input neurons originate from enteric, pharyngeal and external sensory organs and converge onto seven distinct sensory synaptic compartments within the CNS. Output neurons consist of feeding motor, serotonergic modulatory and neuroendocrine neurons. Monosynaptic connections from a set of sensory synaptic compartments cover the motor, modulatory and neuroendocrine targets in overlapping domains. Polysynaptic routes are superimposed on top of monosynaptic connections, resulting in divergent sensory paths that converge on common outputs. A completely different set of sensory compartments is connected to the mushroom body calyx. The mushroom body output neurons are connected to interneurons that directly target the feeding output neurons. Our results illustrate a circuit architecture in which monosynaptic and multisynaptic connections from sensory inputs traverse onto output neurons via a series of converging paths.

    View Publication Page
    Fetter LabTruman LabZlatic LabCardona Lab
    12/20/17 | Divergent connectivity of homologous command-like neurons mediates segment-specific touch responses in Drosophila.
    Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, Fetter RD, Truman JW, Zlatic M, Cardona A, Nose A
    Neuron. 2017 Dec 20;96(6):1373-87. doi: 10.1016/j.neuron.2017.10.030

    Animals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail. We identify a class of segmentally repeated second-order somatosensory interneurons, that we named Wave, whose activation in anterior and posterior segments elicit backward and forward locomotion, respectively. Anterior and posterior Wave neurons extend their dendrites in opposite directions to receive somatosensory inputs from the head and tail, respectively. Downstream of anterior Wave neurons, we identify premotor circuits including the neuron A03a5, which together with Wave, is necessary for the backward locomotion touch response. Thus, Wave neurons match their receptive field to appropriate motor programs by participating in different circuits in different segments.

    View Publication Page