Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

18 Janelia Publications

Showing 1-10 of 18 results
Your Criteria:
    01/31/17 | A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and Enkephalins.
    François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer G
    Neuron. 2017 Jan 31;93(4):822-39. doi: 10.1016/j.neuron.2017.01.008

    Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds.

    View Publication Page
    01/19/17 | A fluorescent Hsp90 probe demonstrates the unique association between extracellular Hsp90 and malignancy in vivo.
    Crowe LB, Hughes PF, Alcorta DA, Osada T, Smith AP, Totzke J, Loiselle DR, Lutz ID, Gargesha M, Roy D, Roques J, Darr D, Lyerly HK, Spector NL, Haystead TA
    ACS chemical biology. 2017 Jan 19:. doi: 10.1021/acschembio.7b00006

    Extracellular expression of heat shock protein 90 (eHsp90) by tumor cells is correlated with malignancy. Development of small molecule probes that can detect eHsp90 in vivo may therefore have utility in the early detection of malignancy. We synthesized a cell impermeable far-red fluorophore-tagged Hsp90 inhibitor to target eHsp90 in vivo. High resolution confocal and lattice light sheet microscopy show that probe-bound eHsp90 accumulates in punctate structures on the plasma membrane of breast tumor cells and is actively internalized. The extent of internalization correlates with tumor cell aggressiveness, and this process can be induced in benign cells by over-expressing p110HER2. Whole body cryoslicing, imaging and histology of flank and spontaneous tumor-bearing mice strongly suggests that eHsp90 expression and internalization is a phenomenon unique to tumor cells in vivo and may provide an 'Achilles heel' for the early diagnosis of metastatic disease and targeted drug delivery.

    View Publication Page
    01/03/17 | A fully synthetic transcriptional platform for a multicellular eukaryote.
    Crocker J, Tsai A, Stern DL
    Cell Reports. 2017 Jan 03;18(1):287-296. doi: 10.1016/j.celrep.2016.12.025

    Regions of genomic DNA called enhancers encode binding sites for transcription factor proteins. Binding of activators and repressors increase and reduce transcription, respectively, but it is not understood how combinations of activators and repressors generate precise patterns of transcription during development. Here, we explore this problem using a fully synthetic transcriptional platform in Drosophila consisting of engineered transcription factor gradients and artificial enhancers. We found that binding sites for a transcription factor that makes DNA accessible are required together with binding sites for transcriptional activators to produce a functional enhancer. Only in this context can changes in the number of activator binding sites mediate quantitative control of transcription. Using an engineered transcriptional repressor gradient, we demonstrate that overlapping repressor and activator binding sites provide more robust repression and sharper expression boundaries than non-overlapping sites. This may explain why this common motif is observed in many developmental enhancers.

    View Publication Page
    01/01/17 | A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs.
    Rivas E, Clements J, Eddy SR
    Nature Methods. 2017 Jan 31;14(1):45-8

    Many functional RNAs have an evolutionarily conserved secondary structure. Conservation of RNA base pairing induces pairwise covariations in sequence alignments. We developed a computational method, R-scape (RNA Structural Covariation Above Phylogenetic Expectation), that quantitatively tests whether covariation analysis supports the presence of a conserved RNA secondary structure. R-scape analysis finds no statistically significant support for proposed secondary structures of the long noncoding RNAs HOTAIR, SRA, and Xist.

    View Publication Page
    01/23/17 | Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments.
    Beach JR, Bruun KS, Shao L, Li D, Swider Z, Remmert K, Zhang Y, Conti MA, Adelstein RS, Rusan NM, Betzig E, Hammer JA
    Nature Cell Biology. 2017 Jan 23;19(2):85-93. doi: 10.1038/ncb3463

    The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning. These and other data indicate that NM2A filaments are partitioned by the dynamic movements of actin fibres to which they are bound. Finally, we showed that partition frequency and filament growth rate in the lamella depend on MLCK, and that MLCK is competing with centrally active ROCK for a limiting pool of monomer with which to drive lamellar filament assembly. Together, our results provide new insights into the mechanism and spatio-temporal regulation of NM2 filament assembly in cells.

    View Publication Page
    Gonen Lab
    01/03/17 | Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity.
    Krotee P, Rodriguez JA, Sawaya MR, Cascio D, Reyes FE, Shi D, Hattne J, Nannenga BL, Oskarsson ME, Philipp S, Griner S, Jiang L, Glabe CG, Westermark GT, Gonen T, Eisenberg DS
    eLife. 2017 Jan 03;6:. doi: 10.7554/eLife.19273

    hIAPP fibrils are associated with Type-II Diabetes, but the link of hIAPP structure to islet cell death remains elusive. Here we observe that hIAPP fibrils are cytotoxic to cultured pancreatic β-cells, leading us to determine the structure and cytotoxicity of protein segments composing the amyloid spine of hIAPP. Using the cryoEM method MicroED, we discover that one segment, 19-29 S20G, forms pairs of β-sheets mated by a dry interface that share structural features with and are similarly cytotoxic to full-length hIAPP fibrils. In contrast, a second segment, 15-25 WT, forms non-toxic labile β-sheets. These segments possess different structures and cytotoxic effects, however, both can seed full-length hIAPP, and cause hIAPP to take on the cytotoxic and structural features of that segment. These results suggest that protein segment structures represent polymorphs of their parent protein and that segment 19-29 S20G may serve as a model for the toxic spine of hIAPP.

    View Publication Page
    01/30/17 | Axonal Endoplasmic Reticulum Ca(2+) Content Controls Release Probability in CNS Nerve Terminals.
    de Juan-Sanz J, Holt GT, Schreiter ER, de Juan F, Kim DS, Ryan TA
    Neuron. 2017 Jan 30;93(4):867-81. doi: 10.1016/j.neuron.2017.01.010

    Although the endoplasmic reticulum (ER) extends throughout axons and axonal ER dysfunction is implicated in numerous neurological diseases, its role at nerve terminals is poorly understood. We developed novel genetically encoded ER-targeted low-affinity Ca(2+) indicators optimized for examining axonal ER Ca(2+). Our experiments revealed that presynaptic function is tightly controlled by ER Ca(2+) content. We found that neuronal activity drives net Ca(2+) uptake into presynaptic ER although this activity does not contribute significantly to shaping cytosolic Ca(2+) except during prolonged repetitive firing. In contrast, we found that axonal ER acts as an actuator of plasma membrane (PM) function: [Ca(2+)]ER controls STIM1 activation in presynaptic terminals, which results in the local modulation of presynaptic function, impacting activity-driven Ca(2+) entry and release probability. These experiments reveal a critical role of presynaptic ER in the control of neurotransmitter release and will help frame future investigations into the molecular basis of ER-driven neuronal disease states.

    View Publication Page
    01/13/17 | Electrophoresis of polar fluorescent tracers through the nerve sheath labels neuronal populations for anatomical and functional imaging.
    Isaacson MD, Hedwig B
    Scientific Reports. 2017 Jan 13;7:40433. doi: 10.1038/srep40433

    The delivery of tracers into populations of neurons is essential to visualize their anatomy and analyze their function. In some model systems genetically-targeted expression of fluorescent proteins is the method of choice; however, these genetic tools are not available for most organisms and alternative labeling methods are very limited. Here we describe a new method for neuronal labelling by electrophoretic dye delivery from a suction electrode directly through the neuronal sheath of nerves and ganglia in insects. Polar tracer molecules were delivered into the locust auditory nerve without destroying its function, simultaneously staining peripheral sensory structures and central axonal projections. Local neuron populations could be labelled directly through the surface of the brain, and in-vivo optical imaging of sound-evoked activity was achieved through the electrophoretic delivery of calcium indicators. The method provides a new tool for studying how stimuli are processed in peripheral and central sensory pathways and is a significant advance for the study of nervous systems in non-model organisms.

    View Publication Page
    Romani LabMagee Lab
    01/23/17 | Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells.
    Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC
    Nature Neuroscience. 2017 Jan 23;20(3):417-26. doi: 10.1038/nn.4486

    Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons. Optogenetic hyperpolarization of interneurons had spatially uniform effects on place cell membrane potential dynamics, substantially reducing spatial selectivity. These data and a computational model suggest that spatially uniform inhibitory conductance enhances rate coding in place cells by suppressing out-of-field excitation and by limiting dendritic amplification. Similarly, we observed that inhibitory suppression of phasic noise generated by out-of-field excitation enhances temporal coding by expanding the range of theta phase precession. Thus, spatially uniform inhibition allows proficient and flexible coding in hippocampal CA1 by suppressing heterogeneously tuned excitation.

    View Publication Page
    01/23/17 | Long-range self-organization of cytoskeletal myosin II filament stacks.
    Hu S, Dasbiswas K, Guo Z, Tee Y, Thiagarajan V, Hersen P, Chew T, Safran SA, Zaidel-Bar R, Bershadsky AD
    Nature Cell Biology. 2017 Jan 23;19(2):133-41. doi: 10.1038/ncb3466

    Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.

    View Publication Page