Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

34 Janelia Publications

Showing 21-30 of 34 results
Your Criteria:
    07/01/19 | Large scale image segmentation with structured loss based deep learning for connectome reconstruction.
    Funke J, Tschopp FD, Grisaitis W, Sheridan A, Singh C, Saalfeld S, Turaga SC
    IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019 Jul 1;41(7):1669-80. doi: 10.1109/TPAMI.2018.2835450

    We present a method combining affinity prediction with region agglomeration, which improves significantly upon the state of the art of neuron segmentation from electron microscopy (EM) in accuracy and scalability. Our method consists of a 3D U-net, trained to predict affinities between voxels, followed by iterative region agglomeration. We train using a structured loss based on MALIS, encouraging topologically correct segmentations obtained from affinity thresholding. Our extension consists of two parts: First, we present a quasi-linear method to compute the loss gradient, improving over the original quadratic algorithm. Second, we compute the gradient in two separate passes to avoid spurious gradient contributions in early training stages. Our predictions are accurate enough that simple learning-free percentile-based agglomeration outperforms more involved methods used earlier on inferior predictions. We present results on three diverse EM datasets, achieving relative improvements over previous results of 27%, 15%, and 250%. Our findings suggest that a single method can be applied to both nearly isotropic block-face EM data and anisotropic serial sectioned EM data. The runtime of our method scales linearly with the size of the volume and achieves a throughput of ~2.6 seconds per megavoxel, qualifying our method for the processing of very large datasets.

    View Publication Page
    10/04/20 | Learning Guided Electron Microscopy with Active Acquisition
    Mi L, Wang H, Meirovitch Y, Schalek R, Turaga SC, Lichtman JW, Samuel AD, Shavit N, Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L
    Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. 10/2020:

    Single-beam scanning electron microscopes (SEM) are widely used to acquire massive datasets for biomedical study, material analysis, and fabrication inspection. Datasets are typically acquired with uniform acquisition: applying the electron beam with the same power and duration to all image pixels, even if there is great variety in the pixels' importance for eventual use. Many SEMs are now able to move the beam to any pixel in the field of view without delay, enabling them, in principle, to invest their time budget more effectively with non-uniform imaging.

    View Publication Page
    01/01/21 | Local Shape Descriptors for Neuron Segmentation
    Sheridan A, Nguyen T, Deb D, Lee WA, Saalfeld S, Turaga S, Manor U, Funke J
    bioRxiv. 2021/01:. doi: 10.1101/2021.01.18.427039

    We present a simple, yet effective, auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of Local Shape Descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors are designed to capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a large study comparing several existing methods across various specimen, imaging techniques, and resolutions, we find that auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinitybased segmentation methods to be on par with the current state of the art for neuron segmentation (Flood-Filling Networks, FFN), while being two orders of magnitudes more efficient—a critical requirement for the processing of future petabyte-sized datasets. Implementations of the new auxiliary learning task, network architectures, training, prediction, and evaluation code, as well as the datasets used in this study are publicly available as a benchmark for future method contributions.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    02/01/23 | Local shape descriptors for neuron segmentation.
    Sheridan A, Nguyen TM, Deb D, Lee WA, Saalfeld S, Turaga SC, Manor U, Funke J
    Nature Methods. 2023 Feb 01;20(2):295-303. doi: 10.1038/s41592-022-01711-z

    We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient-a critical requirement for the processing of future petabyte-sized datasets.

    View Publication Page
    04/21/21 | Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit
    Aitchison L, Russell L, Packer AM, Yan J, Castonguay P, Häusser M, Turaga SC, I. Guyon , U. V. Luxburg , S. Bengio , H. Wallach , R. Fergus , S. Vishwanathan , R. Garnett
    Advances in Neural Information Processing Systems:

    Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have developed a new fully Bayesian approach to jointly inferring spiking activity and neural connectivity from in vivo all-optical perturbation experiments. In contrast to standard approaches that perform spike inference and analysis in two separate maximum-likelihood phases, our joint model is able to propagate uncertainty in spike inference to the inference of connectivity and vice versa. We use the framework of variational autoencoders to model spiking activity using discrete latent variables, low-dimensional latent common input, and sparse spike-and-slab generalized linear coupling between neurons. Additionally, we model two properties of the optogenetic perturbation: off-target photostimulation and photostimulation transients. Using this model, we were able to fit models on 30 minutes of data in just 10 minutes. We performed an all-optical circuit mapping experiment in primary visual cortex of the awake mouse, and use our approach to predict neural connectivity between excitatory neurons in layer 2/3. Predicted connectivity is sparse and consistent with known correlations with stimulus tuning, spontaneous correlation and distance.

     

     

    View Publication Page
    12/04/17 | Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit.
    Aitchison L, Russell L, Packer AM, Yan J, Castonguaye P, Häusser M, Turaga SC
    31st Conference on Neural Information Processing Systems (NIPS 2017). 2017 Dec 04:

    Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have developed a new fully Bayesian approach to jointly inferring spiking activity and neural connectivity from in vivo all-optical perturbation experiments. In contrast to standard approaches that perform spike inference and analysis in two separate maximum-likelihood phases, our joint model is able to propagate uncertainty in spike inference to the inference of connectivity and vice versa. We use the framework of variational autoencoders to model spiking activity using discrete latent variables, low-dimensional latent common input, and sparse spike-and-slab generalized linear coupling between neurons. Additionally, we model two properties of the optogenetic perturbation: off-target photostimulation and photostimulation transients. Our joint model includes at least two sets of discrete random variables; to avoid the dramatic slowdown typically caused by being unable to differentiate such variables, we introduce two strategies that have not, to our knowledge, been used with variational autoencoders. Using this model, we were able to fit models on 30 minutes of data in just 10 minutes. We performed an all-optical circuit mapping experiment in primary visual cortex of the awake mouse, and use our approach to predict neural connectivity between excitatory neurons in layer 2/3. Predicted connectivity is sparse and consistent with known correlations with stimulus tuning, spontaneous correlation and distance.

    View Publication Page
    04/04/18 | Opportunities and obstacles for deep learning in biology and medicine.
    Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow P, Zietz M, Hoffman MM, Xie W, Rosen GL, Lengerich BJ, Israeli J, Lanchantin J, Woloszynek S, Carpenter AE, Shrikumar A, Xu J, Cofer EM
    Journal of The Royal Society Interface. 2018 Apr 4:. doi: 10.1098/rsif.2017.0387

    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes and treatment of patients—and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.

    View Publication Page
    04/21/21 | Programmable 3D snapshot microscopy with Fourier convolutional networks
    Deb D, Jiao Z, Chen AB, Broxton M, Ahrens MB, Podgorski K, Turaga SC

    3D snapshot microscopy enables fast volumetric imaging by capturing a 3D volume in a single 2D camera image and performing computational reconstruction. Fast volumetric imaging has a variety of biological applications such as whole brain imaging of rapid neural activity in larval zebrafish. The optimal microscope design for this optical 3D-to-2D encoding is both sample- and task-dependent, with no general solution known. Deep learning based decoders can be combined with a differentiable simulation of an optical encoder for end-to-end optimization of both the deep learning decoder and optical encoder. This technique has been used to engineer local optical encoders for other problems such as depth estimation, 3D particle localization, and lensless photography. However, 3D snapshot microscopy is known to require a highly non-local optical encoder which existing UNet-based decoders are not able to engineer. We show that a neural network architecture based on global kernel Fourier convolutional neural networks can efficiently decode information from multiple depths in a volume, globally encoded across a 3D snapshot image. We show in simulation that our proposed networks succeed in engineering and reconstructing optical encoders for 3D snapshot microscopy where the existing state-of-the-art UNet architecture fails. We also show that our networks outperform the state-of-the-art learned reconstruction algorithms for a computational photography dataset collected on a prototype lensless camera which also uses a highly non-local optical encoding.

    View Publication Page
    03/15/24 | Social state gates vision using three circuit mechanisms in Drosophila
    Catherine E. Schretter , Tom Hindmarsh Sten , Nathan Klapoetke , Mei Shao , Aljoscha Nern , Marisa Dreher , Daniel Bushey , Alice A. Robie , Adam L. Taylor , Kristin M. Branson , Adriane Otopalik , Vanessa Ruta , Gerald M. Rubin
    bioRxiv. 2024 Mar 15:. doi: 10.1101/2024.03.15.585289

    Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well-studied. Yet, much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviors, flies need to focus on nearby flies. Here, we study how the flow of visual information is altered when female Drosophila enter an aggressive state. From the connectome, we identified three state-dependent circuit motifs poised to selectively amplify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioral and neurophysiological analyses, we show that each of these circuit motifs function during female aggression. We reveal that features of this same switch operate in males during courtship pursuit, suggesting that disparate social behaviors may share circuit mechanisms. Our work provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    03/26/21 | SongExplorer: A deep learning workflow for discovery and segmentation of animal acoustic communication signals
    Arthur BJ, Ding Y, Sosale M, Khalif F, Kim E, Waddell P, Turaga SC, Stern DL
    bioRxiv. 03/2021:. doi: 10.1101/2021.03.26.437280

    Many animals produce distinct sounds or substrate-borne vibrations, but these signals have proved challenging to segment with automated algorithms. We have developed SongExplorer, a web-browser based interface wrapped around a deep-learning algorithm that supports an interactive workflow for (1) discovery of animal sounds, (2) manual annotation, (3) supervised training of a deep convolutional neural network, and (4) automated segmentation of recordings. Raw data can be explored by simultaneously examining song events, both individually and in the context of the entire recording, watching synced video, and listening to song. We provide a simple way to visualize many song events from large datasets within an interactive low-dimensional visualization, which facilitates detection and correction of incorrectly labelled song events. The machine learning model we implemented displays higher accuracy than existing heuristic algorithms and similar accuracy as two expert human annotators. We show that SongExplorer allows rapid detection of all song types from new species and of novel song types in previously well-studied species.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page