Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

191 Janelia Publications

Showing 11-20 of 191 results
Your Criteria:
    12/13/16 | A plasma membrane template for macropinocytic cups.
    Veltman DM, Williams TD, Bloomfield G, Chen B, Betzig E, Insall RH, Kay RR
    eLife. 2016 Dec 13;5:. doi: 10.7554/eLife.20085

    Macropinocytosis is a fundamental mechanism that allows cells to take up extracellular liquid into large vesicles. It critically depends on the formation of a ring of protrusive actin beneath the plasma membrane, which develops into the macropinocytic cup. We show that macropinocytic cups in Dictyostelium are organised around coincident intense patches of PIP3, active Ras and active Rac. These signalling patches are invariably associated with a ring of active SCAR/WAVE at their periphery, as are all examined structures based on PIP3 patches, including phagocytic cups and basal waves. Patch formation does not depend on the enclosing F-actin ring, and patches become enlarged when the RasGAP NF1 is mutated, showing that Ras plays an instructive role. New macropinocytic cups predominantly form by splitting from existing ones. We propose that cup-shaped plasma membrane structures form from self-organizing patches of active Ras/PIP3, which recruit a ring of actin nucleators to their periphery.

    View Publication Page
    01/20/16 | A platform for brain-wide imaging and reconstruction of individual neurons.
    Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, Myers EW, Chandrashekar J
    eLife. 2016 Jan 20;5:. doi: 10.7554/eLife.10566

    The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.

    View Publication Page
    07/28/16 | A practical guide to light sheet microscopy.
    Bennett DV, Ahrens MB
    Methods in Molecular Biology (Clifton, N.J.). 2016;1451:321-31. doi: 10.1007/978-1-4939-3771-4_22

    Light sheet fluorescence microscopy is an efficient method for imaging large volumes of biological tissue, including brains of larval zebrafish, at high spatial and fairly high temporal resolution with minimal phototoxicity.Here, we provide a practical guide for those who intend to build a light sheet microscope for fluorescence imaging in live larval zebrafish brains or other tissues.

    View Publication Page
    03/29/16 | A primer on the Bayesian approach to high-density single-molecule trajectories analysis.
    El Beheiry M, Türkcan S, Richly MU, Triller A, Alexandrou A, Dahan M, Masson J
    Biophysical Journal. 2016 Mar 29;110(6):1209-15. doi: 10.1016/j.bpj.2016.01.018

    Tracking single molecules in living cells provides invaluable information on their environment and on the interactions that underlie their motion. New experimental techniques now permit the recording of large amounts of individual trajectories, enabling the implementation of advanced statistical tools for data analysis. In this primer, we present a Bayesian approach toward treating these data, and we discuss how it can be fruitfully employed to infer physical and biochemical parameters from single-molecule trajectories.

    View Publication Page
    06/03/16 | A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons.
    Triphan T, Nern A, Roberts SF, Korff W, Naiman DQ, Strauss R
    Scientific Reports. 2016;6:27000. doi: 10.1038/srep27000

    Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system.

    View Publication Page
    Looger Lab
    12/01/16 | A timecourse analysis of systemic and gonadal effects of temperature on sexual development of the red-eared slider turtle Trachemys scripta elegans.
    Czerwinski M, Natarajan A, Barske L, Looger LL, Capel B
    Developmental Biology. 2016 Dec 1 ;420(1):166-77. doi: 10.1016/j.ydbio.2016.09.018

    Temperature dependent sex determination (TSD) is the process by which the environmental temperature experienced during embryogenesis influences the sex of an organism, as in the red-eared slider turtle Trachemys scripta elegans. In accord with current paradigms of vertebrate sex determination, temperature is believed to exert its effects on sexual development in T. scripta entirely within the middle third of development, when the gonad is forming. However, whether temperature regulates the transcriptome in T. scripta early embryos in a manner that could influence secondary sex characteristics or establish a pro-male or pro-female environment has not been investigated. In addition, apart from a handful of candidate genes, very little is known about potential similarities between the expression cascade during TSD and the genetic cascade that drives mammalian sex determination. Here, we conducted an unbiased transcriptome-wide analysis of the effects of male- and female-promoting temperatures on the turtle embryo prior to gonad formation, and on the gonad during the temperature sensitive period. We found sexually dimorphic expression reflecting differences in steroidogenic enzymes and brain development prior to gonad formation. Within the gonad, we mapped a cascade of differential expression similar to the genetic cascade established in mammals. Using a Hidden Markov Model based clustering approach, we identified groups of genes that show heterochronic shifts between M. musculus and T. scripta. We propose a model in which multiple factors influenced by temperature accumulate during early gonadogenesis, and converge on the antagonistic regulation of aromatase to canalize sex determination near the end of the temperature sensitive window of development.

    View Publication Page
    Gonen Lab
    10/04/16 | Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED.
    Sawaya MR, Rodriguez J, Cascio D, Collazo MJ, Shi D, Reyes FE, Hattne J, Gonen T, Eisenberg DS
    Proceedings of the National Academy of Sciences of the United States of America. 2016 Oct 04;113(40):11232-6. doi: 10.1073/pnas.1606287113

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.

    View Publication Page
    Gonen LabDruckmann Lab
    07/22/16 | Accurate design of megadalton-scale two-component icosahedral protein complexes.
    Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D
    Science (New York, N.Y.). 2016 Jul 22;353(6297):389-94. doi: 10.1126/science.aaf8818

    Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.

    View Publication Page
    Grigorieff Lab
    06/02/16 | Activation of NMDA receptors and the mechanism of inhibition by ifenprodil.
    Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, Furukawa H
    Nature. 2016 Jun 2;534(7605):63-8. doi: 10.1038/nature17679

    The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to a ligand-binding domain (LBD) and structural rearrangement of an amino-terminal domain (ATD). Recent crystal structures of GluN1-GluN2B NMDA receptors bound to agonists and an allosteric inhibitor, ifenprodil, represent the allosterically inhibited state. However, how the ATD and LBD move to activate the NMDA receptor ion channel remains unclear. Here we applied X-ray crystallography, single-particle electron cryomicroscopy and electrophysiology to rat NMDA receptors to show that, in the absence of ifenprodil, the bi-lobed structure of GluN2 ATD adopts an open conformation accompanied by rearrangement of the GluN1-GluN2 ATD heterodimeric interface, altering subunit orientation in the ATD and LBD and forming an active receptor conformation that gates the ion channel.

    View Publication Page
    Murphy Lab
    08/31/16 | Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons.
    Gale SD, Murphy GJ
    The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 2016 Aug 31;36(35):9111-23. doi: 10.1523/JNEUROSCI.0645-16.2016

    UNLABELLED: Neurons respond to specific features of sensory stimuli. In the visual system, for example, some neurons respond to motion of small but not large objects, whereas other neurons prefer motion of the entire visual field. Separate neurons respond equally to local and global motion but selectively to additional features of visual stimuli. How and where does response selectivity emerge? Here, we show that wide-field (WF) cells in retino-recipient layers of the mouse superior colliculus (SC) respond selectively to small moving objects. Moreover, we identify two mechanisms that contribute to this selectivity. First, we show that input restricted to a small portion of the broad dendritic arbor of WF cells is sufficient to trigger dendritic spikes that reliably propagate to the soma/axon. In vivo whole-cell recordings reveal that nearly every action potential evoked by visual stimuli has characteristics of spikes initiated in dendrites. Second, inhibitory input from a different class of SC neuron, horizontal cells, constrains the range of stimuli to which WF cells respond. Horizontal cells respond preferentially to the sudden appearance or rapid movement of large stimuli. Optogenetic reduction of their activity reduces movement selectivity and broadens size tuning in WF cells by increasing the relative strength of responses to stimuli that appear suddenly or cover a large region of space. Therefore, strongly propagating dendritic spikes enable small stimuli to drive spike output in WF cells and local inhibition helps restrict responses to stimuli that are both small and moving.

    SIGNIFICANCE STATEMENT: How do neurons respond selectively to some sensory stimuli but not others? In the visual system, a particularly relevant stimulus feature is object motion, which often reveals other animals. Here, we show how specific cells in the superior colliculus, one synapse downstream of the retina, respond selectively to object motion. These wide-field (WF) cells respond strongly to small objects that move slowly anywhere through a large region of space, but not to stationary objects or full-field motion. Action potential initiation in dendrites enables small stimuli to trigger visual responses and inhibitory input from cells that prefer large, suddenly appearing, or quickly moving stimuli restricts responses of WF cells to objects that are small and moving.

    View Publication Page