Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

206 Janelia Publications

Showing 61-70 of 206 results
Your Criteria:
    Zlatic LabTruman Lab
    03/28/18 | Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues.
    Humberg T, Bruegger P, Afonso B, Zlatic M, Truman JW, Gershow M, Samuel A, Sprecher SG
    Nature Communications. 2018 Mar 28;9(1):1260. doi: 10.1038/s41467-018-03520-5

    To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.

    View Publication Page
    09/05/18 | Defective cortex glia plasma membrane structure underlies light-induced epilepsy in mutants.
    Kunduri G, Turner-Evans D, Konya Y, Izumi Y, Nagashima K, Lockett S, Holthuis J, Bamba T, Acharya U, Acharya JK
    Proceedings of the National Academy of Sciences of the United States of America. 2018 Sep 05;115(38):E8919-28. doi: 10.1073/pnas.1808463115

    Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in , owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase ()-null mutants and fail to encapsulate the neuronal cell bodies in the neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in mutants and leads to the PSE phenotype.

    View Publication Page
    10/11/18 | Development of 2-colour and 3D SMLM data analysis methods for fibrous spatial point patterns.
    Peters R, Griffié J, Williamson D, Aaron J, Khuon S, Owen D
    Journal of Physics D: Applied Physics. 2018 Oct 11;52(1):1. doi: 10.1088/1361-6463/aae7ac

    Abstract ingle molecule localisation microscopy (SMLM), experimentally achieved over a decade ago, has become a routinely used analytical tool across the life sciences. Synergistic advances in probe chemistry, optical physics and data analysis has propelled SMLM into the quantitative realm, enabling unprecedented access to the cellular machinery at the nanoscale. In its early years, SMLM primarily served as a platform for impressive rendered images of sub diffraction scale structures, however more recently a shift towards interrogating SMLM point pattern data in a robust mathematical framework has occurred. A prevalent theme in the SMLM field is the need for quantitative analytical methods, to better understand the underlying processes on which SMLM reports and to extract statistically valid biological insights. Whilst some forms of post processing analytics, for example cluster analysis, have been widely studied, others such as fibre analysis remain in their infancy. Here, we review the current state of the art of cluster analysis and fibre analysis and present new methods for their implementation in both 3D SMLM data sets and multi-colour data.

    View Publication Page
    12/03/18 | Developmental pattern and structural factors of dendritic survival in cerebellar granule cells in vivo.
    Dhar M, Hantman AW, Nishiyama H
    Scientific Reports. 2018 Dec 03;8(1):17561. doi: 10.1038/s41598-018-35829-y

    Granule cells (GCs) in the cerebellar cortex are important for sparse encoding of afferent sensorimotor information. Modeling studies show that GCs can perform their function most effectively when they have four dendrites. Indeed, mature GCs have four short dendrites on average, each terminating in a claw-like ending that receives both excitatory and inhibitory inputs. Immature GCs, however, have significantly more dendrites-all without claws. How these redundant dendrites are refined during development is largely unclear. Here, we used in vivo time-lapse imaging and immunohistochemistry to study developmental refinement of GC dendritic arbors and its relation to synapse formation. We found that while the formation of dendritic claws stabilized the dendrites, the selection of surviving dendrites was made before claw formation, and longer immature dendrites had a significantly higher chance of survival than shorter dendrites. Using immunohistochemistry, we show that glutamatergic and GABAergic synapses are transiently formed on immature GC dendrites, and the number of GABAergic, but not glutamatergic, synapses correlates with the length of immature dendrites. Together, these results suggest a potential role of transient GABAergic synapses on dendritic selection and show that preselected dendrites are stabilized by the formation of dendritic claws-the site of mature synapses.

    View Publication Page
    05/28/18 | Discrete flow posteriors for variational inference in discrete dynamical systems.
    Aitchison L, Adam V, Turaga SC
    arXiv. 2018 May 28:1805.10958

    Each training step for a variational autoencoder (VAE) requires us to sample from the approximate posterior, so we usually choose simple (e.g. factorised) approximate posteriors in which sampling is an efficient computation that fully exploits GPU parallelism. However, such simple approximate posteriors are often insufficient, as they eliminate statistical dependencies in the posterior. While it is possible to use normalizing flow approximate posteriors for continuous latents, some problems have discrete latents and strong statistical dependencies. The most natural approach to model these dependencies is an autoregressive distribution, but sampling from such distributions is inherently sequential and thus slow. We develop a fast, parallel sampling procedure for autoregressive distributions based on fixed-point iterations which enables efficient and accurate variational inference in discrete state-space latent variable dynamical systems. To optimize the variational bound, we considered two ways to evaluate probabilities: inserting the relaxed samples directly into the pmf for the discrete distribution, or converting to continuous logistic latent variables and interpreting the K-step fixed-point iterations as a normalizing flow. We found that converting to continuous latent variables gave considerable additional scope for mismatch between the true and approximate posteriors, which resulted in biased inferences, we thus used the former approach. Using our fast sampling procedure, we were able to realize the benefits of correlated posteriors, including accurate uncertainty estimates for one cell, and accurate connectivity estimates for multiple cells, in an order of magnitude less time.

    View Publication Page
    04/10/18 | Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes.
    Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N
    Cell. 2018 Apr 10;173(5):1280-92. doi: 10.1016/j.cell.2018.03.031

    The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.

    View Publication Page
    Murphy Lab
    06/13/18 | Distinct cell types in the superficial superior colliculus project to the dorsal lateral geniculate and lateral posterior thalamic nuclei.
    Gale SD, Murphy GJ
    Journal of Neurophysiology. 2018 Jun 13;120(3):1286-92. doi: 10.1152/jn.00248.2018

    The superficial layers of the superior colliculus (sSC) receive retinal input and project to thalamic regions - the dorsal lateral geniculate (dLGN) and lateral posterior (LP; or pulvinar) nuclei -that convey visual information to cortex. A critical step towards understanding the functional impact of sSC neurons on these parallel thalamo-cortical pathways is determining whether different classes of sSC neurons, which are known to respond to different features of visual stimuli, innervate overlapping or distinct thalamic targets. Here, we identified a transgenic mouse line that labels sSC neurons that project to dLGN but not LP. We utilized selective expression of fluorophores and channelrhodopsin in this and previously characterized mouse lines to demonstrate that distinct cell types give rise to sSC projections to dLGN and LP. We further show that the glutamatergic sSC cell type that projects to dLGN also provides input to the sSC cell type that projects to LP. These results clarify the cellular origin of parallel sSC-thalamo-cortical pathways and reveal an interaction between these pathways via local connections within the sSC.

    View Publication Page
    Looger LabSvoboda LabMouseLightQuantitative Genomics
    10/31/18 | Distinct descending motor cortex pathways and their roles in movement.
    Economo MN, Viswanathan S, Tasic B, Bas E, Winnubst J, Menon V, Graybuck LT, Nguyen TN, Smith KA, Yao Z, Wang L, Gerfen CR, Chandrashekar J, Zeng H, Looger LL, Svoboda K
    Nature. 2018 Nov;563(7729):79-84. doi: 10.1038/s41586-018-0642-9

    Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.

    View Publication Page
    Svoboda Lab
    03/27/18 | Dynamic cues for whisker-based object localization: An analytical solution to vibration during active whisker touch.
    Vaxenburg R, Wyche I, Svoboda K, Efros AL, Hires SA
    PLoS Computational Biology. 2018 Mar 27;14(3):e1006032. doi: 10.1371/journal.pcbi.1006032

    Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks.

    View Publication Page
    05/07/18 | Ejaculation induced by the activation of Crz neurons is rewarding to Drosophila males.
    Zer-Krispil S, Zak H, Shao L, Ben-Shaanan S, Tordjman L, Bentzur A, Shmueli A, Shohat-Ophir G
    Current Biology : CB. 2018 May 07;28(9):1445-1452.e3. doi: 10.1016/j.cub.2018.03.039

    The reward system is a collection of circuits that reinforce behaviors necessary for survival [1, 2]. Given the importance of reproduction for survival, actions that promote successful mating induce pleasurable feeling and are positively reinforced [3, 4]. This principle is conserved in Drosophila, where successful copulation is naturally rewarding to male flies, induces long-term appetitive memories [5], increases brain levels of neuropeptide F (NPF, the fly homolog of neuropeptide Y), and prevents ethanol, known otherwise as rewarding to flies [6, 7], from being rewarding [5]. It is not clear which of the multiple sensory and motor responses performed during mating induces perception of reward. Sexual interactions with female flies that do not reach copulation are not sufficient to reduce ethanol consumption [5], suggesting that only successful mating encounters are rewarding. Here, we uncoupled the initial steps of mating from its final steps and tested the ability of ejaculation to mimic the rewarding value of full copulation. We induced ejaculation by activating neurons that express the neuropeptide corazonin (CRZ) [8] and subsequently measured different aspects of reward. We show that activating Crz-expressing neurons is rewarding to male flies, as they choose to reside in a zone that triggers optogenetic stimulation of Crz neurons and display conditioned preference for an odor paired with the activation. Reminiscent of successful mating, repeated activation of Crz neurons increases npf levels and reduces ethanol consumption. Our results demonstrate that ejaculation stimulated by Crz/Crz-receptor signaling serves as an essential part of the mating reward mechanism in Drosophila. VIDEO ABSTRACT.

    View Publication Page