Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

132 Janelia Publications

Showing 121-130 of 132 results
Your Criteria:
    02/01/24 | The density of regulatory information is a major determinant of evolutionary constraint on non-coding DNA in Drosophila
    Gonzalo Sabarís , Daniela M. Ortíz , Ian Laiker , Ignacio Mayansky , Sujay Naik , Giacomo Cavalli , David L. Stern , Ella Preger-Ben Noon , Nicolás Frankel
    Molecular Biology and Evolution. 2024 Feb 01;41(2):msae004. doi: 10.1093/molbev/msae004

    The density and distribution of regulatory information in non-coding DNA of eukaryotic genomes is largely unknown. Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the D. melanogaster genome is functionally relevant. This estimate is difficult to reconcile with the commonly accepted idea that enhancers are compact regulatory elements that generally encompass less than 1 kilobase of DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kilobases of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory architecture that drives svb expression in the abdominal pupal epidermis is organized in a dramatically different way than the information that drives svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact and dispersed enhancers, svb expression in the pupal epidermis is driven by large regions with enhancer activity, which occupy a great portion of the svb cis-regulatory DNA. We observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved non-coding DNA of the Drosophila genome is contained within putative regulatory DNA. These results suggest that part of the evolutionary constraint on non-coding DNA of Drosophila is explained by the density of regulatory information.

    View Publication Page
    05/14/24 | The kinase ZYG-1 phosphorylates the cartwheel protein SAS-5 to drive centriole assembly in C. elegans
    Sankaralingam P, Wang S, Liu Y, Oegema KF, O'Connell KF
    EMBO Rep. 2024 May 14:. doi: 10.1038/s44319-024-00157-y

    Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5 exhibit centriole assembly failure, while those expressing SAS-5 possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.

    View Publication Page
    06/04/24 | The physical and cellular mechanism of structural color change in zebrafish.
    Gur D, Moore AS, Deis R, Song P, Wu X, Pinkas I, Deo C, Iyer N, Hess HF, Hammer JA, Lippincott-Schwartz J
    Proc Natl Acad Sci U S A. 2024 Jun 04;121(23):e2308531121. doi: 10.1073/pnas.2308531121

    Many animals exhibit remarkable colors that are produced by the constructive interference of light reflected from arrays of intracellular guanine crystals. These animals can fine-tune their crystal-based structural colors to communicate with each other, regulate body temperature, and create camouflage. While it is known that these changes in color are caused by changes in the angle of the crystal arrays relative to incident light, the cellular machinery that drives color change is not understood. Here, using a combination of 3D focused ion beam scanning electron microscopy (FIB-SEM), micro-focused X-ray diffraction, superresolution fluorescence light microscopy, and pharmacological perturbations, we characterized the dynamics and 3D cellular reorganization of crystal arrays within zebrafish iridophores during norepinephrine (NE)-induced color change. We found that color change results from a coordinated 20° tilting of the intracellular crystals, which alters both crystal packing and the angle at which impinging light hits the crystals. Importantly, addition of the dynein inhibitor dynapyrazole-a completely blocked this NE-induced red shift by hindering crystal dynamics upon NE addition. FIB-SEM and microtubule organizing center (MTOC) mapping showed that microtubules arise from two MTOCs located near the poles of the iridophore and run parallel to, and in between, individual crystals. This suggests that dynein drives crystal angle change in response to NE by binding to the limiting membrane surrounding individual crystals and walking toward microtubule minus ends. Finally, we found that intracellular cAMP regulates the color change process. Together, our results provide mechanistic insight into the cellular machinery that drives structural color change.

    View Publication Page
    03/12/24 | Three-dimensional spatio-angular fluorescence microscopy with a polarized dual-view inverted selective-plane illumination microscope (pol-diSPIM)
    Talon Chandler , Min Guo , Yijun Su , Jiji Chen , Yicong Wu , Junyu Liu , Atharva Agashe , Robert S. Fischer , Shalin B. Mehta , Abhishek Kumar , Tobias I. Baskin , Valentin Jamouille , Huafeng Liu , Vinay Swaminathan , Amrinder Nain , Rudolf Oldenbourg , Patrick La Riviere , Hari Shroff
    bioRxiv. 2024 Mar 12:. doi: 10.1101/2024.03.09.584243

    Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.Competing Interest StatementH.S., A.K., S.M., P.L.R., R.O., Y.W., and T.C. hold US Patent #11428632.

    View Publication Page
    04/07/24 | Transformers do not outperform Cellpose
    Carsen Stringer , Marius Pachitariu
    bioRxiv. 2024 Apr 7:. doi: 10.1101/2024.04.06.587952

    In a recent publication, Ma et al [1] claim that a transformer-based cellular segmentation method called Mediar [2] — which won a Neurips challenge — outperforms Cellpose [3] (0.897 vs 0.543 median F1 score). Here we show that this result was obtained by artificially impairing Cellpose in multiple ways. When we removed these impairments, Cellpose outperformed Mediar (0.861 vs 0.826 median F1 score on the updated test set). To further investigate the performance of transformers for cellular segmentation, we replaced the Cellpose backbone with a transformer. The transformer-Cellpose model also did not outperform the standard Cellpose (0.848 median F1 test score). Our results suggest that transformers do not advance the state-of-the-art in cellular segmentation.

    View Publication Page
    01/01/24 | Transforming chemigenetic bimolecular fluorescence complementation systems into chemical dimerizers using chemistry.
    Pratik Kumar , Alina Gutu , Amelia Waring , Timothy A. Brown , Luke D. Lavis , Alison G. Tebo
    bioRxiv. 2024 Jan 01:. doi: 10.1101/2023.12.30.573644

    Chemigenetic tags are versatile labels for fluorescence microscopy that combine some of the advantages of genetically encoded tags with small molecule fluorophores. The Fluorescence Activating and absorbance Shifting Tags (FASTs) bind a series of highly fluorogenic and cell-permeable chromophores. Furthermore, FASTs can be used in complementation-based systems for detecting or inducing protein-protein interactions, depending on the exact FAST protein variant chosen. In this study, we systematically explore substitution patterns on FAST fluorogens and generate a series of fluorogens that bind to FAST variants, thereby activating their fluorescence. This effort led to the discovery of a novel fluorogen with superior properties, as well as a fluorogen that transforms splitFAST systems into a fluorogenic dimerizer, eliminating the need for additional protein engineering.

    View Publication Page
    06/10/24 | Transport and Organization of Individual Vimentin Filaments Within Dense Networks Revealed by Single Particle Tracking and 3D FIB-SEM
    Renganathan B, Moore AS, Yeo W, Petruncio A, Ackerman D, Wiegel A, CellMap Team , Pasolli HA, Xu CS, Hess HF, Serpinskaya AS, Zhang HF, Lippincott-Schwartz J, Gelfand VI
    bioRxiv. 2024 Jun 10:. doi: 10.1101/2024.06.10.598346

    Vimentin intermediate filaments (VIFs) form complex, tight-packed networks; due to this density, traditional ensemble labeling and imaging approaches cannot accurately discern single filament behavior. To address this, we introduce a sparse vimentin-SunTag labeling strategy to unambiguously visualize individual filament dynamics. This technique confirmed known long-range dynein and kinesin transport of peripheral VIFs and uncovered extensive bidirectional VIF motion within the perinuclear vimentin network, a region we had thought too densely bundled to permit such motility. To examine the nanoscale organization of perinuclear vimentin, we acquired high-resolution electron microscopy volumes of a vitreously frozen cell and reconstructed VIFs and microtubules within a 50 um3 window. Of 583 VIFs identified, most were integrated into long, semi-coherent bundles that fluctuated in width and filament packing density. Unexpectedly, VIFs displayed minimal local co-alignment with microtubules, save for sporadic cross-over sites that we predict facilitate cytoskeletal crosstalk. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time.

    View Publication Page
    04/10/24 | Ultra-high density electrodes improve detection, yield, and cell type identification in neuronal recordings
    Zhiwen Ye , Andrew M Shelton , Jordan R Shaker , Julien M Boussard , Jennifer Colonell , Daniel Birman , Sahar Manavi , Susu Chen , Charlie Windolf , Cole Hurwitz , Tomoyuki Namima , Frederico Pedraja , Shahaf Weiss , Bogdan Raducanu , Torbjørn Ness , Xiaoxuan Jia , Giulia Mastroberardino , L. Federico Rossi , Matteo Carandini , Michael Hausser , Gaute T Einevoll , Gilles Laurent , Nathaniel B Sawtell , Wyeth Bair , Anitha Pasupathy , Carolina Mora-Lopez , Barun Dutta , Liam Paninski , Joshua H Siegle , Christof Koch , Shawn R Olsen , Timothy D Harris , Nicholas A Steinmetz
    bioRxiv. 2024 Apr 10:. doi: 10.1101/2023.08.23.554527

    To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density ( 10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron’s electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to 3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

    View Publication Page
    05/13/24 | Ultrastructural differences impact cilia shape and external exposure across cell classes in the visual cortex
    Ott CM, Torres R, Kuan T, Kuan A, Buchanan J, Elabbady L, Seshamani S, Bodor AL, Collman F, Bock DD, Lee WC, da Costa NM, Lippincott-Schwartz J
    Curr Biol. 2024 May 13:. doi: 10.1016/j.cub.2024.04.043

    A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.

    View Publication Page
    03/22/24 | Visualization of Glutamatergic Neurotransmission in Diverse Model Organisms with Genetically Encoded Indicators
    Aggarwal A, Chan J, Waring AK, Negrean A, Marvin JS, Podgorski K, Looger LL, Kukley M
    New Technologies for Glutamate Interaction: Neurons and Glia;2780:3–34. doi: 10.1007/978-1-0716-3742-5_1

    Glutamate is the principal excitatory neurotransmitter, and occasionally subserves inhibitory roles, in the vertebrate nervous system. Glutamatergic synapses are dense in the vertebrate brain, at \textasciitilde1/μm3. Glutamate is released from and onto diverse components of the nervous system, including neurons, glia, and other cells. Methods for glutamate detection are critically important for understanding the function of synapses and neural circuits in normal physiology, development, and disease. Here we describe the development, optimization, and deployment of genetically encoded fluorescent glutamate indicators. We review the theoretical considerations governing glutamate sensor properties from first principles of synapse biology, microscopy, and protein structure-function relationships. We provide case studies of the state-of-the-art iGluSnFR glutamate sensor, encompassing design and optimization, mechanism of action, in vivo imaging, data analysis, and future directions. We include detailed protocols for iGluSnFR imaging in common preparations (bacteria, cell culture, and brain slices) and model organisms (worm, fly, fish, rodent).

    View Publication Page