Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

174 Janelia Publications

Showing 41-50 of 174 results
Your Criteria:
    04/01/21 | Brain microvasculature has a common topology with local differences in geometry that match metabolic load.
    Ji X, Ferreira T, Friedman B, Liu R, Liechty H, Bas E, Chandrashekar J, Kleinfeld D
    Neuron. 2021 April 01;109(7):1168. doi: 10.1016/j.neuron.2021.02.006

    The microvasculature underlies the supply networks that support neuronal activity within heterogeneous brain regions. What are common versus heterogeneous aspects of the connectivity, density, and orientation of capillary networks? To address this, we imaged, reconstructed, and analyzed the microvasculature connectome in whole adult mice brains with sub-micrometer resolution. Graph analysis revealed common network topology across the brain that leads to a shared structural robustness against the rarefaction of vessels. Geometrical analysis, based on anatomically accurate reconstructions, uncovered a scaling law that links length density, i.e., the length of vessel per volume, with tissue-to-vessel distances. We then derive a formula that connects regional differences in metabolism to differences in length density and, further, predicts a common value of maximum tissue oxygen tension across the brain. Last, the orientation of capillaries is weakly anisotropic with the exception of a few strongly anisotropic regions; this variation can impact the interpretation of fMRI data.

    View Publication Page
    07/01/21 | Bursting potentiates the neuro-AI connection.
    Sun W, Zhao X, Spruston N
    Nature Neuroscience. 2021 Jul 01;24(7):905-6. doi: 10.1038/s41593-021-00844-2
    08/24/21 | Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility.
    Klappenbach CM, Negretti NM, Aaron J, Chew T, Konkel ME
    mBio. 2021 Aug 24:e0149421. doi: 10.1128/mBio.01494-21

    Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions. Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected epithelial cells. Focal adhesions act as signaling complexes that connect the extracellular matrix to the intracellular cytoskeleton. The key findings of this study show that C. jejuni changes the structure (size and position), composition, and function of cellular focal adhesions using a combination of virulence factors. Mechanistically, we found that the changes in focal adhesion dynamics are dependent upon the activation of host cell signaling pathways, which affect the assembly and disassembly of cellular proteins from the focal adhesion. To summarize, we have identified a new cellular phenotype in C. jejuni-infected cells that may be responsible for the restricted intestinal repair observed in C. jejuni-infected animals.

    View Publication Page
    08/24/21 | Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility.
    Klappenbach CM, Negretti NM, Aaron J, Chew T, Konkel ME
    mBio. 2021 Aug 24;12(4):e0149421. doi: 10.1128/mBio.01494-21

    Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions. Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected epithelial cells. Focal adhesions act as signaling complexes that connect the extracellular matrix to the intracellular cytoskeleton. The key findings of this study show that C. jejuni changes the structure (size and position), composition, and function of cellular focal adhesions using a combination of virulence factors. Mechanistically, we found that the changes in focal adhesion dynamics are dependent upon the activation of host cell signaling pathways, which affect the assembly and disassembly of cellular proteins from the focal adhesion. To summarize, we have identified a new cellular phenotype in C. jejuni-infected cells that may be responsible for the restricted intestinal repair observed in C. jejuni-infected animals.

    View Publication Page
    01/07/21 | Cellpose: a generalist algorithm for cellular segmentation.
    Stringer C, Wang T, Michaelos M, Pachitariu M
    Nature Methods. 2021 Jan 07;18(1):100-106. doi: 10.1038/s41592-020-01018-x

    Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation method called Cellpose, which can precisely segment cells from a wide range of image types and does not require model retraining or parameter adjustments. Cellpose was trained on a new dataset of highly varied images of cells, containing over 70,000 segmented objects. We also demonstrate a three-dimensional (3D) extension of Cellpose that reuses the two-dimensional (2D) model and does not require 3D-labeled data. To support community contributions to the training data, we developed software for manual labeling and for curation of the automated results. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.

    View Publication Page
    09/30/21 | Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging.
    Li T, Fu T, Wong KK, Li H, Xie Q, Luginbuhl DJ, Wagner MJ, Betzig E, Luo L
    Cell. 2021 Sep 30;184(20):5107. doi: 10.1016/j.cell.2021.08.030

    Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.

    View Publication Page
    01/07/21 | Characterization of a common progenitor pool of the epicardium and myocardium.
    Tyser RC, Ibarra-Soria X, McDole K, A Jayaram S, Godwin J, van den Brand TA, Miranda AM, Scialdone A, Keller PJ, Marioni JC, Srinivas S
    Science. 2021 Jan 07:. doi: 10.1126/science.abb2986

    The mammalian heart is derived from multiple cell lineages; however, our understanding of when and how the diverse cardiac cell types arise is limited. We mapped the origin of the embryonic mouse heart at single-cell resolution using a combination of transcriptomic, imaging, and genetic lineage labeling approaches. This provided a transcriptional and anatomic definition of cardiac progenitor types. Furthermore, it revealed a cardiac progenitor pool that is anatomically and transcriptionally distinct from currently known cardiac progenitors. Besides contributing to cardiomyocytes, these cells also represent the earliest progenitor of the epicardium, a source of trophic factors and cells during cardiac development and injury. This study provides detailed insights into the formation of early cardiac cell types, with particular relevance to the development of cell-based cardiac regenerative therapies.

    View Publication Page
    03/16/21 | Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation.
    Baltruschat L, Prisco L, Ranft P, Lauritzen JS, Fiala A, Bock DD, Tavosanis G
    Cell Reports. 2021 Mar 16;34(11):108871. doi: 10.1016/j.celrep.2021.108871

    The formation and consolidation of memories are complex phenomena involving synaptic plasticity, microcircuit reorganization, and the formation of multiple representations within distinct circuits. To gain insight into the structural aspects of memory consolidation, we focus on the calyx of the Drosophila mushroom body. In this essential center, essential for olfactory learning, second- and third-order neurons connect through large synaptic microglomeruli, which we dissect at the electron microscopy level. Focusing on microglomeruli that respond to a specific odor, we reveal that appetitive long-term memory results in increased numbers of precisely those functional microglomeruli responding to the conditioned odor. Hindering memory consolidation by non-coincident presentation of odor and reward, by blocking protein synthesis, or by including memory mutants suppress these structural changes, revealing their tight correlation with the process of memory consolidation. Thus, olfactory long-term memory is associated with input-specific structural modifications in a high-order center of the fly brain.

    View Publication Page
    11/10/21 | Circuits for integrating learned and innate valences in the insect brain.
    Eschbach C, Fushiki A, Winding M, Afonso B, Andrade IV, Cocanougher BT, Eichler K, Gepner R, Si G, Valdes-Aleman J, Fetter RD, Gershow M, Jefferis GS, Samuel AD, Truman JW, Cardona A, Zlatic M
    eLife. 2021 Nov 10;10:. doi: 10.7554/eLife.62567

    Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all Mushroom Body output neurons (encoding learned valences) and characterized their patterns of interaction with Lateral Horn neurons (encoding innate valences) in larva. The connectome revealed multiple types that receive convergent Mushroom Body and Lateral Horn inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.

    View Publication Page
    12/14/20 | Cis-regulatory variation in the shavenbaby gene underlies intraspecific phenotypic variation, mirroring interspecific divergence in the same trait.
    Soverna AF, Rodriguez NC, Korgaonkar A, Hasson E, Stern DL, Frankel N
    Evolution. 2020 Dec 14:. doi: 10.1111/evo.14142

    Despite considerable progress in recent decades in dissecting the genetic causes of natural morphological variation, there is limited understanding of how variation within species ultimately contributes to species differences. We have studied patterning of the non-sensory hairs, commonly known as "trichomes," on the dorsal cuticle of first-instar larvae of Drosophila. Most Drosophila species produce a dense lawn of dorsal trichomes, but a subset of these trichomes were lost in D. sechellia and D. ezoana due entirely to regulatory evolution of the shavenbaby (svb) gene. Here, we describe intraspecific variation in dorsal trichome patterns of first-instar larvae of D. virilis that is similar to the trichome pattern variation identified previously between species. We found that a single large effect QTL, which includes svb, explains most of the trichome number difference between two D. virilis strains and that svb expression correlates with the trichome difference between strains. This QTL does not explain the entire difference between strains, implying that additional loci contribute to variation in trichome numbers. Thus, the genetic architecture of intraspecific variation exhibits similarities and differences with interspecific variation that may reflect differences in long-term and short-term evolutionary processes.

    View Publication Page