Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

132 Janelia Publications

Showing 101-110 of 132 results
Your Criteria:
    01/04/24 | Petascale pipeline for precise alignment of images from serial section electron microscopy.
    Popovych S, Macrina T, Kemnitz N, Castro M, Nehoran B, Jia Z, Bae JA, Mitchell E, Mu S, Trautman ET, Saalfeld S, Li K, Seung HS
    Nature Communications. 2024 Jan 04;15(1):289. doi: 10.1038/s41467-023-44354-0

    The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.

    View Publication Page
    01/11/24 | Prediction of Cellular Identities from Trajectory and Cell Fate Information
    Baiyang Dai , Jiamin Yang , Hari Shroff , Patrick La Riviere
    arXiv. 2024 Jan 11:. doi: 10.48550/arXiv.2401.06182

    Determining cell identities in imaging sequences is an important yet challenging task. The conventional method for cell identification is via cell tracking, which is complex and can be time-consuming. In this study, we propose an innovative approach to cell identification during early C. elegans embryogenesis using machine learning. We employed random forest, MLP, and LSTM models, and tested cell classification accuracy on 3D time-lapse confocal datasets spanning the first 4 hours of embryogenesis. By leveraging a small number of spatial-temporal features of individual cells, including cell trajectory and cell fate information, our models achieve an accuracy of over 90%, even with limited data. We also determine the most important feature contributions and can interpret these features in the context of biological knowledge. Our research demonstrates the success of predicting cell identities in 4D imaging sequences directly from simple spatio-temporal features.

    View Publication Page
    02/21/24 | RAL-1 signaling regulates lipid composition in .
    Wu Y, Lee M, Mutlu AS, Wang M, Reiner DJ
    MicroPubl Biol. 2024 Feb 21;2024:. doi: 10.17912/micropub.biology.001054

    Signaling by the Ral small GTPase is poorly understood . animals with constitutively activated RAL-1 or deficient for the inhibitory RalGAP, HGAP-1 /2, display pale intestines. Staining with Oil Red O detected decreased intestinal lipids in the deletion mutant relative to the wild type. Constitutively activated RAL-1 decreased lipid detected by stimulated Raman scattering (SRS) microscopy, a label-free method of detecting lipid by laser excitation and detection. A signaling-deficient missense mutant for RAL-1 also displayed reduced lipid staining via SRS. We conclude that RAL-1 signaling regulates lipid homeostasis, biosynthesis or storage in live animals.

    View Publication Page
    05/01/24 | Recognising the importance and impact of Imaging Scientists: Global guidelines for establishing career paths within core facilities
    Wright GD, Thompson KA, Reis Y, Bischof J, Hockberger PE, Itano MS, Yen L, Adelodun ST, Bialy N, Brown CM, Chaabane L, Chew T, Chitty AI, Cordelières FP, De Niz M, Ellenberg J, Engelbrecht L, Fabian-Morales E, Fazeli E, Fernandez-Rodriguez J, Ferrando-May E, Fletcher G, Galloway GJ, Guerrero A, Guimarães JM, Jacobs CA, Jayasinghe S, Kable E, Kitten GT, Komoto S, Ma X, Marques JA, Millis BA, Miranda K, JohnO'Toole P, Olatunji SY, Paina F, Pollak CN, Prats C, Pylvänäinen JW, Rahmoon MA, Reiche MA, Riches JD, Rossi AH, Salamero J, Thiriet C, Terjung S, Vasconcelos AD, Keppler A
    J Microsc. 2024 May 01:. doi: 10.1111/jmi.13307

    In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.

    View Publication Page
    02/29/24 | Recommendations for accelerating open preprint peer review to improve the culture of science
    Avissar-Whiting M, Belliard F, Bertozzi SM, Brand A, Brown K, Clément-Stoneham G, Dawson S, Dey G, Ecer D, Edmunds SC, Farley A, Fischer TD, Franko M, Fraser JS, Funk K, Ganier C, Harrison M, Hatch A, Hazlett H, Hindle S, Hook DW, Hurst P, Kamoun S, Kiley R, Lacy MM, LaFlamme M, Lawrence R, Lemberger T, Leptin M, Lumb E, MacCallum CJ, Marcum CS, Marinello G, Mendonça A, Monaco S, Neves K, Pattinson D, Polka JK, Puebla I, Rittman M, Royle SJ, Saderi D, Sever R, Shearer K, Spiro JE, Stern B, Taraborelli D, Vale R, Vasquez CG, Waltman L, Watt FM, Weinberg ZY, Williams M
    PLOS Biology. 2024 Feb 29;22(2):e3002502. doi: 10.1371/journal.pbio.300250210.1371/journal.pbio.3002502.g001

    Peer review is an important part of the scientific process, but traditional peer review at journals is coming under increased scrutiny for its inefficiency and lack of transparency. As preprints become more widely used and accepted, they raise the possibility of rethinking the peer-review process. Preprints are enabling new forms of peer review that have the potential to be more thorough, inclusive, and collegial than traditional journal peer review, and to thus fundamentally shift the culture of peer review toward constructive collaboration. In this Consensus View, we make a call to action to stakeholders in the community to accelerate the growing momentum of preprint sharing and provide recommendations to empower researchers to provide open and constructive peer review for preprints.

    View Publication Page
    02/23/24 | Recording physiological history of cells with chemical labeling.
    Huppertz M, Wilhelm J, Grenier V, Schneider MW, Falt T, Porzberg N, Hausmann D, Hoffmann DC, Hai L, Tarnawski M, Pino G, Slanchev K, Kolb I, Acuna C, Fenk LM, Baier H, Hiblot J, Johnsson K
    Science. 2024 Feb 23;383(6685):890-897. doi: 10.1126/science.adg0812

    Recordings of the physiological history of cells provide insights into biological processes, yet obtaining such recordings is a challenge. To address this, we introduce a method to record transient cellular events for later analysis. We designed proteins that become labeled in the presence of both a specific cellular activity and a fluorescent substrate. The recording period is set by the presence of the substrate, whereas the cellular activity controls the degree of the labeling. The use of distinguishable substrates enabled the recording of successive periods of activity. We recorded protein-protein interactions, G protein-coupled receptor activation, and increases in intracellular calcium. Recordings of elevated calcium levels allowed selections of cells from heterogeneous populations for transcriptomic analysis and tracking of neuronal activities in flies and zebrafish.

    View Publication Page
    05/31/24 | Salivary gland developmental mechanics
    Morales EA, Wang S
    Current Topics in Developmental Biology:. doi: 10.1016/bs.ctdb.2024.05.002

    The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.

    View Publication Page
    05/07/24 | Salivary Gland Tissue Recombination Can Modify Cell Fate
    Sekiguchi R, Martin D, Doyle AD, Wang S, Genomics and Computational Biology Core , Yamada KM
    J Dent Res. 2024 May 07:220345241247484. doi: 10.1177/00220345241247484

    Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.

    View Publication Page
    05/20/24 | SciJava Ops: An Improved Algorithms Framework for Fiji and Beyond
    Gabriel J. Selzer , Curtis T. Rueden , Mark C. Hiner , Edward L. Evans III au2 , David Kolb , Marcel Wiedenmann , Christian Birkhold , Tim-Oliver Buchholz , Stefan Helfrich , Brian Northan , Alison Walter , Johannes Schindelin , Tobias Pietzsch , Stephan Saalfeld , Michael R. Berthold , Kevin W. Eliceiri
    arXiv. 2024-05-20:. doi: 10.48550/arXiv.2405.12385

    Many scientific software platforms provide plugin mechanisms that simplify the integration, deployment, and execution of externally developed functionality. One of the most widely used platforms in the imaging space is Fiji, a popular open-source application for scientific image analysis. Fiji incorporates and builds on the ImageJ and ImageJ2 platforms, which provide a powerful plugin architecture used by thousands of plugins to solve a wide variety of problems. This capability is a major part of Fiji's success, and it has become a widely used biological image analysis tool and a target for new functionality. However, a plugin-based software architecture cannot unify disparate platforms operating on incompatible data structures; interoperability necessitates the creation of adaptation or "bridge" layers to translate data and invoke functionality. As a result, while platforms like Fiji enable a high degree of interconnectivity and extensibility, they were not fundamentally designed to integrate across the many data types, programming languages, and architectural differences of various software help address this challenge, we present SciJava Ops, a foundational software library for expressing algorithms as plugins in a unified and extensible way. Continuing the evolution of Fiji's SciJava plugin mechanism, SciJava Ops enables users to harness algorithms from various software platforms within a central execution environment. In addition, SciJava Ops automatically adapts data into the most appropriate structure for each algorithm, allowing users to freely and transparently combine algorithms from otherwise incompatible tools. While SciJava Ops is initially distributed as a Fiji update site, the framework does not require Fiji, ImageJ, or ImageJ2, and would be suitable for integration with additional image analysis platforms.

    View Publication Page
    02/28/24 | Sensory neuron population expansion enhances odor tracking without sensitizing projection neurons
    Suguru Takagi , Gizem Sancer , Liliane Abuin , S. David Stupski , J. Roman Arguello , Lucia L. Prieto-Godino , David L. Stern , Steeve Cruchet , Raquel Álvarez-Ocaña , Carl F. R. Wienecke , Floris van Breugel , James M. Jeanne , Thomas O. Auer , Richard Benton
    bioRxiv. 2024 Feb 28:. doi: 10.1101/2023.09.15.556782

    The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.

    View Publication Page