Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

186 Janelia Publications

Showing 91-100 of 186 results
Your Criteria:
    Romani LabMagee Lab
    01/23/17 | Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells.
    Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC
    Nature Neuroscience. 2017 Jan 23;20(3):417-26. doi: 10.1038/nn.4486

    Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons. Optogenetic hyperpolarization of interneurons had spatially uniform effects on place cell membrane potential dynamics, substantially reducing spatial selectivity. These data and a computational model suggest that spatially uniform inhibitory conductance enhances rate coding in place cells by suppressing out-of-field excitation and by limiting dendritic amplification. Similarly, we observed that inhibitory suppression of phasic noise generated by out-of-field excitation enhances temporal coding by expanding the range of theta phase precession. Thus, spatially uniform inhibition allows proficient and flexible coding in hippocampal CA1 by suppressing heterogeneously tuned excitation.

    View Publication Page
    05/17/17 | Integrating Results across Methodologies Is Essential for Producing Robust Neuronal Taxonomies.
    Cembrowski MS, Spruston N
    Neuron. 2017 May 17;94(4):747-751.e1. doi: 10.1016/j.neuron.2017.04.023

    Elucidating the diversity and spatial organization of cell types in the brain is an essential goal of neuroscience, with many emerging technologies helping to advance this endeavor. Using a new in situ hybridization method that can measure the expression of hundreds of genes in a given mouse brain section (amplified seqFISH), Shah et al. (2016) describe a spatial organization of hippocampal cell types that differs from previous reports. In seeking to understand this discrepancy, we find that many of the barcoded genes used by seqFISH to characterize this spatial organization, when cross-validated by other sensitive methodologies, exhibit negligible expression in the hippocampus. Additionally, the results of Shah et al. (2016) do not recapitulate canonical cellular hierarchies and improperly classify major neuronal cell types. We suggest that, when describing the spatial organization of brain regions, cross-validation using multiple techniques should be used to yield robust and informative cellular classification. This Matters Arising paper is in response to Shah et al. (2016), published in Neuron. See also the response by Shah et al. (2017), published in this issue.

    View Publication Page
    Singer Lab
    10/24/17 | Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells.
    Haimovich G, Ecker CM, Dunagin MC, Eggan E, Raj A, Gerst JE, Singer RH
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Oct 24;114(46):E9873-E9882. doi: 10.1073/pnas.1706365114

    RNAs have been shown to undergo transfer between mammalian cells, although the mechanism behind this phenomenon and its overall importance to cell physiology is not well understood. Numerous publications have suggested that RNAs (microRNAs and incomplete mRNAs) undergo transfer via extracellular vesicles (e.g., exosomes). However, in contrast to a diffusion-based transfer mechanism, we find that full-length mRNAs undergo direct cell-cell transfer via cytoplasmic extensions characteristic of membrane nanotubes (mNTs), which connect donor and acceptor cells. By employing a simple coculture experimental model and using single-molecule imaging, we provide quantitative data showing that mRNAs are transferred between cells in contact. Examples of mRNAs that undergo transfer include those encoding GFP, mouse β-actin, and human Cyclin D1, BRCA1, MT2A, and HER2. We show that intercellular mRNA transfer occurs in all coculture models tested (e.g., between primary cells, immortalized cells, and in cocultures of immortalized human and murine cells). Rapid mRNA transfer is dependent upon actin but is independent of de novo protein synthesis and is modulated by stress conditions and gene-expression levels. Hence, this work supports the hypothesis that full-length mRNAs undergo transfer between cells through a refined structural connection. Importantly, unlike the transfer of miRNA or RNA fragments, this process of communication transfers genetic information that could potentially alter the acceptor cell proteome. This phenomenon may prove important for the proper development and functioning of tissues as well as for host-parasite or symbiotic interactions.

    View Publication Page
    07/05/17 | Ion Channels: History, Diversity, and Impact.
    Brenowitz S, Duguid I, Kammermeier PJ
    Cold Spring Harbor Protocols. 2017 Jul 05;2017(7):pdb.top092288. doi: 10.1101/pdb.top092288

    From patch-clamp techniques to recombinant DNA technologies, three-dimensional protein modeling, and optogenetics, diverse and sophisticated methods have been used to study ion channels and how they determine the electrical properties of cells.

    View Publication Page
    04/25/17 | Live-cell super-resolution reveals F-Actin and plasma membrane dynamics at the T Cell synapse.
    Ashdown GW, Burn GL, Williamson DJ, Pandzic E, Peters R, Holden M, Ewers H, Shao L, Wiseman PW, Owen DM
    Biophysical Journal. 2017 Apr 25;112(8):1703-13. doi: 10.1016/j.bpj.2017.01.038

    The cortical actin cytoskeleton has been shown to be critical for the reorganization and heterogeneity of plasma membrane components of many cells, including T cells. Building on previous studies at the T cell immunological synapse, we quantitatively assess the structure and dynamics of this meshwork using live-cell superresolution fluorescence microscopy and spatio-temporal image correlation spectroscopy. We show for the first time, to our knowledge, that not only does the dense actin cortex flow in a retrograde fashion toward the synapse center, but the plasma membrane itself shows similar behavior. Furthermore, using two-color, live-cell superresolution cross-correlation spectroscopy, we demonstrate that the two flows are correlated and, in addition, we show that coupling may extend to the outer leaflet of the plasma membrane by examining the flow of GPI-anchored proteins. Finally, we demonstrate that the actin flow is correlated with a third component, α-actinin, which upon CRISPR knockout led to reduced plasma membrane flow directionality despite increased actin flow velocity. We hypothesize that this apparent cytoskeletal-membrane coupling could provide a mechanism for driving the observed retrograde flow of signaling molecules such as the TCR, Lck, ZAP70, LAT, and SLP76.

    View Publication Page
    01/23/17 | Long-range self-organization of cytoskeletal myosin II filament stacks.
    Hu S, Dasbiswas K, Guo Z, Tee Y, Thiagarajan V, Hersen P, Chew T, Safran SA, Zaidel-Bar R, Bershadsky AD
    Nature Cell Biology. 2017 Jan 23;19(2):133-41. doi: 10.1038/ncb3466

    Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.

    View Publication Page
    Gonen Lab
    06/22/17 | Low-complexity domains adhere by reversible amyloid-like interactions between kinked β-sheets.
    Hughes MP, Sawaya MR, Goldschmidt L, Rodriguez JA, Cascio D, Gonen T, Eisenberg DS
    bioRxiv. 2017 Jun 22:. doi: 10.1101/153817

    Control of metabolism by compartmentation is a widespread feature of higher cells. Recent studies have focused on dynamic intracellular bodies such as stress granules, P-bodies, nucleoli, and metabolic puncta. These bodies appear as separate phases, some containing reversible, amyloid-like fibrils formed by interactions of low-complexity protein domains. Here we report five atomic structures of segments of low-complexity domains from granule-forming proteins, one determined to 1.1 Å resolution by micro-electron diffraction. Four of these interacting protein segments show common characteristics, all in contrast to pathogenic amyloid: kinked peptide backbones, small surface areas of interaction, and predominate attractions between aromatic side-chains. By computationally threading the human proteome on three of our kinked structures, we identified hundreds of low-complexity segments potentially capable of forming such reversible interactions. These segments are found in proteins as diverse as RNA binders, nuclear pore proteins, keratins, and cornified envelope proteins, consistent with the capacity of cells to form a wide variety of dynamic intracellular bodies.

    View Publication Page
    01/01/17 | Machine vision methods for analyzing social interactions.
    Robie AA, Seagraves KM, Egnor SE, Branson K
    The Journal of Experimental Biology. 2017 Jan 01;220(Pt 1):25-34. doi: 10.1242/jeb.142281

    Recent developments in machine vision methods for automatic, quantitative analysis of social behavior have immensely improved both the scale and level of resolution with which we can dissect interactions between members of the same species. In this paper, we review these methods, with a particular focus on how biologists can apply them to their own work. We discuss several components of machine vision-based analyses: methods to record high-quality video for automated analyses, video-based tracking algorithms for estimating the positions of interacting animals, and machine learning methods for recognizing patterns of interactions. These methods are extremely general in their applicability, and we review a subset of successful applications of them to biological questions in several model systems with very different types of social behaviors.

    View Publication Page
    Druckmann LabSvoboda Lab
    05/03/17 | Maintenance of persistent activity in a frontal thalamocortical loop.
    Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K
    Nature. 2017 May 03;545(7653):181-6. doi: 10.1038/nature22324

    Persistent neural activity maintains information that connects past and future events. Models of persistent activity often invoke reverberations within local cortical circuits, but long-range circuits could also contribute. Neurons in the mouse anterior lateral motor cortex (ALM) have been shown to have selective persistent activity that instructs future actions. The ALM is connected bidirectionally with parts of the thalamus, including the ventral medial and ventral anterior-lateral nuclei. We recorded spikes from the ALM and thalamus during tactile discrimination with a delayed directional response. Here we show that, similar to ALM neurons, thalamic neurons exhibited selective persistent delay activity that predicted movement direction. Unilateral photoinhibition of delay activity in the ALM or thalamus produced contralesional neglect. Photoinhibition of the thalamus caused a short-latency and near-complete collapse of ALM activity. Similarly, photoinhibition of the ALM diminished thalamic activity. Our results show that the thalamus is a circuit hub in motor preparation and suggest that persistent activity requires reciprocal excitation across multiple brain areas.

    View Publication Page
    07/13/17 | Mapping the neural substrates of behavior.
    Robie AA, Hirokawa J, Edwards AW, Umayam LA, Lee A, Phillips ML, Card GM, Korff W, Rubin GM, Simpson JH, Reiser MB, Branson KM
    Cell. 2017-07-13;170(2):393-406. doi: 10.1016/j.cell.2017.06.032

    Assigning behavioral functions to neural structures has long been a central goal in neuroscience and is a necessary first step toward a circuit-level understanding of how the brain generates behavior. Here, we map the neural substrates of locomotion and social behaviors for Drosophila melanogaster using automated machine-vision and machine-learning techniques. From videos of 400,000 flies, we quantified the behavioral effects of activating 2,204 genetically targeted populations of neurons. We combined a novel quantification of anatomy with our behavioral analysis to create brain-behavior correlation maps, which are shared as browsable web pages and interactive software. Based on these maps, we generated hypotheses of regions of the brain causally related to sensory processing, locomotor control, courtship, aggression, and sleep. Our maps directly specify genetic tools to target these regions, which we used to identify a small population of neurons with a role in the control of walking.

    •We developed machine-vision methods to broadly and precisely quantify fly behavior•We measured effects of activating 2,204 genetically targeted neuronal populations•We created whole-brain maps of neural substrates of locomotor and social behaviors•We created resources for exploring our results and enabling further investigation

    Machine-vision analyses of large behavior and neuroanatomy data reveal whole-brain maps of regions associated with numerous complex behaviors.

    View Publication Page