Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

59 Janelia Publications

Showing 11-20 of 59 results
Your Criteria:
    Gonen Lab
    04/25/17 | An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division.
    Senzani S, Li D, Bhaskar A, Ealand C, Chang J, Rimal B, Liu C, Joon Kim S, Dhar N, Kana B
    Scientific Reports. 2017 Apr 25;7(1):1140. doi: 10.1038/s41598-017-01184-7

    Mycobacteria possess a multi-layered cell wall that requires extensive remodelling during cell division. We investigated the role of an amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase, a peptidoglycan remodelling enzyme implicated in cell division. We demonstrated that deletion of MSMEG_6281 (Ami1) in Mycobacterium smegmatis resulted in the formation of cellular chains, illustrative of cells that were unable to complete division. Suprisingly, viability in the Δami1 mutant was maintained through atypical lateral branching, the products of which proceeded to form viable daughter cells. We showed that these lateral buds resulted from mislocalization of DivIVA, a major determinant in facilitating polar elongation in mycobacterial cells. Failure of Δami1 mutant cells to separate also led to dysregulation of FtsZ ring bundling. Loss of Ami1 resulted in defects in septal peptidoglycan turnover with release of excess cell wall material from the septum or newly born cell poles. We noted signficant accumulation of 3-3 crosslinked muropeptides in the Δami1 mutant. We further demonstrated that deletion of ami1 leads to increased cell wall permeability and enhanced susceptiblity to cell wall targeting antibiotics. Collectively, these data provide novel insight on cell division in actinobacteria and highlights a new class of potential drug targets for mycobacterial diseases.

    View Publication Page
    Gonen Lab
    04/18/18 | Analysis of global and site-specific radiation damage in cryo-EM.
    Hattne J, Shi D, Glynn C, Zee C, Gallagher-Jones M, Martynowycz MW, Rodriguez JA, Gonen T
    Structure (London, England : 1993). 2018 Apr 18;26(5):759-66. doi: 10.1016/j.str.2018.03.021

    Micro-crystal electron diffraction (MicroED) combines the efficiency of electron scattering with diffraction to allow structure determination from nano-sized crystalline samples in cryoelectron microscopy (cryo-EM). It has been used to solve structures of a diverse set of biomolecules and materials, in some cases to sub-atomic resolution. However, little is known about the damaging effects of the electron beam on samples during such measurements. We assess global and site-specific damage from electron radiation on nanocrystals of proteinase K and of a prion hepta-peptide and find that the dynamics of electron-induced damage follow well-established trends observed in X-ray crystallography. Metal ions are perturbed, disulfide bonds are broken, and acidic side chains are decarboxylated while the diffracted intensities decay exponentially with increasing exposure. A better understanding of radiation damage in MicroED improves our assessment and processing of all types of cryo-EM data.

    View Publication Page
    Gonen Lab
    07/25/16 | Atomic resolution structure determination by the cryo-EM method MicroED.
    Liu S, Hattne J, Reyes FE, Sanchez-Martinez S, de la Cruz MJ, Shi D, Gonen T
    Protein Science : a Publication of the Protein Society. 2016 Jul 25;26(1):8-15. doi: 10.1002/pro.2989

    The electron cryo-microscopy (cryoEM) method MicroED has been rapidly developing. In this review we highlight some of the key steps in MicroED from crystal analysis to structure determination. We compare and contrast MicroED and the latest X-ray based diffraction method the X-ray free electron laser (XFEL). Strengths and shortcomings of both MicroED and XFEL are discussed. Finally, all current MicroED structures are tabulated with a view to the future. This article is protected by copyright. All rights reserved.

    View Publication Page
    Gonen Lab
    01/03/17 | Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity.
    Krotee P, Rodriguez JA, Sawaya MR, Cascio D, Reyes FE, Shi D, Hattne J, Nannenga BL, Oskarsson ME, Philipp S, Griner S, Jiang L, Glabe CG, Westermark GT, Gonen T, Eisenberg DS
    eLife. 2017 Jan 03;6:. doi: 10.7554/eLife.19273

    hIAPP fibrils are associated with Type-II Diabetes, but the link of hIAPP structure to islet cell death remains elusive. Here we observe that hIAPP fibrils are cytotoxic to cultured pancreatic β-cells, leading us to determine the structure and cytotoxicity of protein segments composing the amyloid spine of hIAPP. Using the cryoEM method MicroED, we discover that one segment, 19-29 S20G, forms pairs of β-sheets mated by a dry interface that share structural features with and are similarly cytotoxic to full-length hIAPP fibrils. In contrast, a second segment, 15-25 WT, forms non-toxic labile β-sheets. These segments possess different structures and cytotoxic effects, however, both can seed full-length hIAPP, and cause hIAPP to take on the cytotoxic and structural features of that segment. These results suggest that protein segment structures represent polymorphs of their parent protein and that segment 19-29 S20G may serve as a model for the toxic spine of hIAPP.

    View Publication Page
    Gonen Lab
    03/12/18 | Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2.
    Guenther EL, Ge P, Trinh H, Sawaya MR, Cascio D, Boyer DR, Gonen T, Zhou ZH, Eisenberg DS
    Nature Structural & Molecular Biology. 2018 Mar 12:. doi: 10.1038/s41594-018-0045-5

    Proteins in the fibrous amyloid state are a major hallmark of neurodegenerative disease. Understanding the multiple conformations, or polymorphs, of amyloid proteins at the molecular level is a challenge of amyloid research. Here, we detail the wide range of polymorphs formed by a segment of human TAR DNA-binding protein 43 (TDP-43) as a model for the polymorphic capabilities of pathological amyloid aggregation. Using X-ray diffraction, microelectron diffraction (MicroED) and single-particle cryo-EM, we show that theDLIIKGISVHIsegment from the second RNA-recognition motif (RRM2) forms an array of amyloid polymorphs. These associations include seven distinct interfaces displaying five different symmetry classes of steric zippers. Additionally, we find that this segment can adopt three different backbone conformations that contribute to its polymorphic capabilities. The polymorphic nature of this segment illustrates at the molecular level how amyloid proteins can form diverse fibril structures.

    View Publication Page
    Gonen Lab
    02/13/17 | Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED.
    de la Cruz MJ, Hattne J, Shi D, Seidler P, Rodriguez J, Reyes FE, Sawaya MR, Cascio D, Weiss SC, Kim SK, Hinck CS, Hinck AP, Calero G, Eisenberg D, Gonen T
    Nature Methods. 2017 Feb 13;14(4):399-402. doi: 10.1038/nmeth.4178

    Traditionally, crystallographic analysis of macromolecules has depended on large, well-ordered crystals, which often require significant effort to obtain. Even sizable crystals sometimes suffer from pathologies that render them inappropriate for high-resolution structure determination. Here we show that fragmentation of large, imperfect crystals into microcrystals or nanocrystals can provide a simple path for high-resolution structure determination by the cryoEM method MicroED and potentially by serial femtosecond crystallography.

    View Publication Page
    Gonen Lab
    12/27/17 | Common fibrillar spines of amyloid-β and human Islet Amyloid Polypeptide revealed by Micro Electron Diffraction and inhibitors developed using structure-based design.
    Krotee P, Griner SL, Sawaya MR, Cascio D, Rodriguez JA, Shi D, Philipp S, Murray K, Saelices L, Lee J, Seidler P, Glabe CG, Jiang L, Gonen T, Eisenberg DS
    The Journal of Biological Chemistry. 2017 Dec 27;293(8):2888-902. doi: 10.1074/jbc.M117.806109

    Amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregate to form amyloid fibrils that deposit in tissues, and are associated with Alzheimer's disease (AD) and Type-II Diabetes (T2D), respectively. Individuals with T2D have an increased risk of developing AD, and conversely, AD patients have an increased risk of developing T2D. Evidence suggests that this link between AD and T2D might originate from a structural similarity between aggregates of Aβ and hIAPP. Using the cryoEM method Micro-Electron Diffraction (MicroED) we determined the atomic structures of 11-residue segments from both Aβ and hIAPP, termed Aβ 24-34 WT and hIAPP 19-29 S20G, with 64% sequence similarity. We observe a high degree of structural similarity between their backbone atoms (0.96 Å RMSD). Moreover, fibrils of these segments induce amyloid formation through self- and cross-seeding. Furthermore, inhibitors designed for one segment show cross-efficacy for full-length Aβ and hIAPP and reduce cytotoxicity of both proteins, though by apparently blocking different cytotoxic mechanisms. The similarity of the atomic structures of Aβ 24-34 WT and hIAPP 19-29 S20G offers a molecular model for cross-seeding between Aβ and hIAPP.

    View Publication Page
    Gonen Lab
    06/01/12 | Computational design of self-assembling protein nanomaterials with atomic level accuracy.
    King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D
    Science. 2012 Jun 1;336(6085):1171-4. doi: 10.1126/science.1219364

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method can be used to design a wide variety of self-assembling protein nanomaterials.

    View Publication Page
    Gonen Lab
    05/12/13 | Crystal structure of a nitrate/nitrite exchanger.
    Zheng H, Wisedchaisri G, Gonen T
    Nature. 2013 May 12;497(7451):647-51. doi: 10.1038/nature12139

    Mineral nitrogen in nature is often found in the form of nitrate (NO3(-)). Numerous microorganisms evolved to assimilate nitrate and use it as a major source of mineral nitrogen uptake. Nitrate, which is central in nitrogen metabolism, is first reduced to nitrite (NO2(-)) through a two-electron reduction reaction. The accumulation of cellular nitrite can be harmful because nitrite can be reduced to the cytotoxic nitric oxide. Instead, nitrite is rapidly removed from the cell by channels and transporters, or reduced to ammonium or dinitrogen through the action of assimilatory enzymes. Despite decades of effort no structure is currently available for any nitrate transport protein and the mechanism by which nitrate is transported remains largely unknown. Here we report the structure of a bacterial nitrate/nitrite transport protein, NarK, from Escherichia coli, with and without substrate. The structures reveal a positively charged substrate-translocation pathway lacking protonatable residues, suggesting that NarK functions as a nitrate/nitrite exchanger and that protons are unlikely to be co-transported. Conserved arginine residues comprise the substrate-binding pocket, which is formed by association of helices from the two halves of NarK. Key residues that are important for substrate recognition and transport are identified and related to extensive mutagenesis and functional studies. We propose that NarK exchanges nitrate for nitrite by a rocker switch mechanism facilitated by inter-domain hydrogen bond networks.

    View Publication Page
    Gonen Lab
    06/01/18 | Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state.
    Lei H, Ma J, Sanchez Martinez S, Gonen T
    Nature Structural & Molecular Biology. 2018 Jun;25(6):522-527. doi: 10.1038/s41594-018-0072-2

    Recent advances in understanding intracellular amino acid transport and mechanistic target of rapamycin complex 1 (mTORC1) signaling shed light on solute carrier 38, family A member 9 (SLC38A9), a lysosomal transporter responsible for the binding and translocation of several essential amino acids. Here we present the first crystal structure of SLC38A9 from Danio rerio in complex with arginine. As captured in the cytosol-open state, the bound arginine was locked in a transitional state stabilized by transmembrane helix 1 (TM1) of drSLC38A9, which was anchored at the groove between TM5 and TM7. These anchoring interactions were mediated by the highly conserved WNTMM motif in TM1, and mutations in this motif abolished arginine transport by drSLC38A9. The underlying mechanism of substrate binding is critical for sensitizing the mTORC1 signaling pathway to amino acids and for maintenance of lysosomal amino acid homeostasis. This study offers a first glimpse into a prototypical model for SLC38 transporters.

    View Publication Page