Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2492 Janelia Publications

Showing 2361-2370 of 2492 results
Tjian Lab
08/01/12 | Transcription initiation by human RNA polymerase II visualized at single-molecule resolution.
Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, Park S, Chu S, Tjian R
Genes & Development. 2012 Aug 1;26:1691-702. doi: 10.1101/gad.194936.112

Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy. We detected several stochastic rounds of human Pol II transcription from individual DNA templates, observed attenuation of transcription by promoter mutations, observed enhancement of transcription by activator Sp1, and correlated the transcription signals with real-time interactions of holo-TFIID molecules at individual DNA templates. This integrated single-molecule methodology should be applicable to studying other complex biological processes.

View Publication Page
02/18/20 | Transcriptional co-repressor Sin3a regulates hippocampal synaptic plasticity via Homer1/mGluR5.
Bridi MS, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Banks GS, Lejards C, Hahn C, Giese KP, Havekes R, Spruston N, Abel T
JCI Insight. 2020 Feb 18:. doi: 10.1172/jci.insight.92385

Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of two classes of regulatory complexes: permissive co-activators and silencing co-repressors. Much work has focused on co-activator complexes, but little is known about the co-repressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the co-repressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the post-synaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the mGluR1α- and mGluR5-dependence of long-term potentiation, and increases activation of extracellular signal regulated kinase (ERK) in the hippocampus after learning. Our studies define a critical role for co-repressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.

View Publication Page
02/01/16 | Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting.
Yang C, Fu C, Sugino K, Liu Z, Ren Q, Liu L, Yao X, Lee LP, Lee T
Development (Cambridge, England). 2016 Feb 1;143(3):411-21. doi: 10.1242/dev.129163

A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.

View Publication Page
04/07/24 | Transformers do not outperform Cellpose
Carsen Stringer , Marius Pachitariu
bioRxiv. 2024 Apr 7:. doi: 10.1101/2024.04.06.587952

In a recent publication, Ma et al [1] claim that a transformer-based cellular segmentation method called Mediar [2] — which won a Neurips challenge — outperforms Cellpose [3] (0.897 vs 0.543 median F1 score). Here we show that this result was obtained by artificially impairing Cellpose in multiple ways. When we removed these impairments, Cellpose outperformed Mediar (0.861 vs 0.826 median F1 score on the updated test set). To further investigate the performance of transformers for cellular segmentation, we replaced the Cellpose backbone with a transformer. The transformer-Cellpose model also did not outperform the standard Cellpose (0.848 median F1 test score). Our results suggest that transformers do not advance the state-of-the-art in cellular segmentation.

View Publication Page
01/01/24 | Transforming chemigenetic bimolecular fluorescence complementation systems into chemical dimerizers using chemistry.
Pratik Kumar , Alina Gutu , Amelia Waring , Timothy A. Brown , Luke D. Lavis , Alison G. Tebo
bioRxiv. 2024 Jan 01:. doi: 10.1101/2023.12.30.573644

Chemigenetic tags are versatile labels for fluorescence microscopy that combine some of the advantages of genetically encoded tags with small molecule fluorophores. The Fluorescence Activating and absorbance Shifting Tags (FASTs) bind a series of highly fluorogenic and cell-permeable chromophores. Furthermore, FASTs can be used in complementation-based systems for detecting or inducing protein-protein interactions, depending on the exact FAST protein variant chosen. In this study, we systematically explore substitution patterns on FAST fluorogens and generate a series of fluorogens that bind to FAST variants, thereby activating their fluorescence. This effort led to the discovery of a novel fluorogen with superior properties, as well as a fluorogen that transforms splitFAST systems into a fluorogenic dimerizer, eliminating the need for additional protein engineering.

View Publication Page
Card LabFlyEM
06/07/23 | Transforming descending input into behavior: The organization of premotor circuits in the Drosophila Male Adult Nerve Cord connectome
H. S. J. Cheong , K. Eichler , T. Stuerner , S. K. Asinof , A. S. Champion , E. C. Marin , T. B. Oram , M. Sumathipala , L. Venkatasubramanian , S. Namiki , I. Siwanowicz , M. Costa , S. Berg , Janelia FlyEM Project Team , G. S. X. E. Jefferis , G. M. Card
bioRxiv. 2023 Jun 07:. doi: 10.1101/2023.06.07.543976

In most animals, a relatively small number of descending neurons (DNs) connect higher brain centers in the animal’s head to motor neurons (MNs) in the nerve cord of the animal’s body that effect movement of the limbs. To understand how brain signals generate behavior, it is critical to understand how these descending pathways are organized onto the body MNs. In the fly, Drosophila melanogaster, MNs controlling muscles in the leg, wing, and other motor systems reside in a ventral nerve cord (VNC), analogous to the mammalian spinal cord. In companion papers, we introduced a densely-reconstructed connectome of the Drosophila Male Adult Nerve Cord (MANC, Takemura et al., 2023), including cell type and developmental lineage annotation (Marin et al., 2023), which provides complete VNC connectivity at synaptic resolution. Here, we present a first look at the organization of the VNC networks connecting DNs to MNs based on this new connectome information. We proofread and curated all DNs and MNs to ensure accuracy and reliability, then systematically matched DN axon terminals and MN dendrites with light microscopy data to link their VNC morphology with their brain inputs or muscle targets. We report both broad organizational patterns of the entire network and fine-scale analysis of selected circuits of interest. We discover that direct DN-MN connections are infrequent and identify communities of intrinsic neurons linked to control of different motor systems, including putative ventral circuits for walking, dorsal circuits for flight steering and power generation, and intermediate circuits in the lower tectulum for coordinated action of wings and legs. Our analysis generates hypotheses for future functional experiments and, together with the MANC connectome, empowers others to investigate these and other circuits of the Drosophila ventral nerve cord in richer mechanistic detail.

View Publication Page

Perhaps the most valuable single set of resources for genetic studies of Drosophila melanogaster is the collection of multiply-inverted chromosomes commonly known as balancer chromosomes. Balancers prevent the recovery of recombination exchange products within genomic regions included in inversions and allow perpetual maintenance of deleterious alleles in living stocks and the execution of complex genetic crosses. Balancer chromosomes have been generated traditionally by exposing animals to ionizing radiation and screening for altered chromosome structure or for unusual marker segregation patterns. These approaches are tedious and unpredictable, and have failed to produce the desired products in some species. Here I describe transgenic tools that allow targeted chromosome rearrangements in Drosophila species. The key new resources are engineered reporter genes containing introns with yeast recombination sites and enhancers that drive fluorescent reporter genes in multiple body regions. These tools were used to generate a doubly-inverted chromosome 3R in D. simulans that serves as an effective balancer chromosome.

View Publication Page
Singer Lab
05/05/16 | Translation dynamics of single mRNAs in live cells and neurons.
Wu B, Eliscovich C, Yoon YJ, Singer RH
Science (New York, N.Y.). 2016 May 05;352(6292):1430-5. doi: 10.1126/science.aaf1084

Translation is the fundamental biological process converting mRNA information into proteins. Single molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here we report Single molecule Imaging of NAscent PeptideS (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 AA/s). In primary neurons mRNAs are translated in proximal dendrites but repressed in distal dendrites and display “bursting” translation. This technology provides a tool to address the spatiotemporal translation mechanism of single mRNAs in living cells.

View Publication Page
03/20/15 | Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals.
Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A, Singer RH, Chao JA
Science. 2015 Mar 20;347(6228):1367-671. doi: 10.1126/science.aaa3380

Analysis of single molecules in living cells has provided quantitative insights into the kinetics of fundamental biological processes; however, the dynamics of messenger RNA (mRNA) translation have yet to be addressed. We have developed a fluorescence microscopy technique that reports on the first translation events of individual mRNA molecules. This allowed us to examine the spatiotemporal regulation of translation during normal growth and stress and during Drosophila oocyte development. We have shown that mRNAs are not translated in the nucleus but translate within minutes after export, that sequestration within P-bodies regulates translation, and that oskar mRNA is not translated until it reaches the posterior pole of the oocyte. This methodology provides a framework for studying initiation of protein synthesis on single mRNAs in living cells.

View Publication Page
02/18/18 | Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo.
Boncampain G, Weigel AV
Current Opinion in Cell Biology. 2018 Feb ;50:. doi: 10.1016/j.ceb.2018.03.002

At the center of the secretory pathway, the Golgi complex ensures correct processing and sorting of cargos toward their final destination. Cargos are diverse in topology, function and destination. A remarkable feature of the Golgi complex is its ability to sort and process these diverse cargos destined for secretion, the cell surface, the lysosome, or retained within the secretory pathway. Just as these cargos are diverse so also are their sorting requirements and thus, their trafficking route. There is no one-size-fits-all sorting scheme in the Golgi. We propose a coexistence of models to reconcile these diverse needs. We review examples of differential sorting mediated by proteins and lipids. Additionally, we highlight recent technological developments that have potential to uncover new modes of transport.

View Publication Page