Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

14 Janelia Publications

Showing 11-14 of 14 results
Your Criteria:
    11/14/19 | Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics.
    Aso Y, Ray RP, Long X, Bushey D, Cichewicz K, Ngo T, Sharp B, Christoforou C, Hu A, Lemire AL, Tillberg P, Hirsh J, Litwin-Kumar A, Rubin GM
    eLife. 2019 Nov 14;8:. doi: 10.7554/eLife.49257

    Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso & Rubin 2016). Here we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in . NO's effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems.

    View Publication Page
    05/26/22 | One engram two readouts: stimulus dynamics switch a learned behavior in Drosophila
    Mehrab N Modi , Adithya Rajagopalan , Hervé Rouault , Yoshinori Aso , Glenn C Turner
    bioRxiv. 2022 May 26:. doi: 10.1101/2022.05.24.492551

    Memory guides the choices an animal makes across widely varying conditions in dynamic environments. Consequently, the most adaptive choice depends on the options available. How can a single memory support optimal behavior across different sets of choice options? We address this using olfactory learning in Drosophila. Even when we restrict an odor-punishment association to a single set of synapses using optogenetics, we find that flies still show choice behavior that depends on the options it encounters. Here we show that how the odor choices are presented to the animal influences memory recall itself. Presenting two similar odors in sequence enabled flies to not only discriminate them behaviorally but also at the level of neural activity. However, when the same odors were encountered as solitary stimuli, no such differences were detectable. These results show that memory recall is not simply a comparison to a static learned template, but can be adaptively modulated by stimulus dynamics.

    View Publication Page
    05/06/25 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
    Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
    eLife. 2025 May 06:. doi: 10.7554/eLife.106548.1

    To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.

    View Publication Page
    10/15/19 | The yellow gene influences Drosophila male mating success through sex comb melanization.
    Massey JH, Chung D, Siwanowicz I, Stern DL, Wittkopp PJ
    eLife. 2019 Oct 15;8:. doi: 10.7554/eLife.49388

    males perform a series of courtship behaviors that, when successful, result in copulation with a female. For over a century, mutations in the gene, named for its effects on pigmentation, have been known to reduce male mating success. Prior work has suggested that influences mating behavior through effects on wing extension, song, and/or courtship vigor. Here, we rule out these explanations, as well as effects on the nervous system more generally, and find instead that the effects of on male mating success are mediated by its effects on pigmentation of male-specific leg structures called sex combs. Loss of expression in these modified bristles reduces their melanization, which changes their structure and causes difficulty grasping females prior to copulation. These data illustrate why the mechanical properties of anatomy, not just neural circuitry, must be considered to fully understand the development and evolution of behavior.

    View Publication Page