Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

15 Janelia Publications

Showing 1-10 of 15 results
Your Criteria:
    Sternson Lab
    12/24/15 | An emerging technology framework for the neurobiology of appetite.
    Sternson SM, Atasoy D, Betley JN, Henry FE, Xu S
    Cell Metabolism. 2015 Dec 24;23(2):234-53. doi: 10.1016/j.cmet.2015.12.002

    Advances in neuro-technology for mapping, manipulating, and monitoring molecularly defined cell types are rapidly advancing insight into neural circuits that regulate appetite. Here, we review these important tools and their applications in circuits that control food seeking and consumption. Technical capabilities provided by these tools establish a rigorous experimental framework for research into the neurobiology of hunger.

    View Publication Page
    12/03/15 | Cortex commands the performance of skilled movement.
    Guo J, Graves AR, Guo WW, Zheng J, Lee A, Rodríguez-González J, Li N, Macklin JJ, Phillips JW, Mensh BD, Branson K, Hantman AW
    eLife. 2015 Dec 3;4:. doi: 10.7554/eLife.10774

    Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition even during rest periods lacking cue and pellet. This 'rebound' prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition's end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill.

    View Publication Page
    08/06/15 | Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons.
    Kim Y, Hsu C, Cembrowski MS, Mensh BD, Spruston N
    eLife. 2015 Aug 06;4:. doi: 10.7554/eLife.06414

    Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity.

    View Publication Page
    Looger LabKeller Lab
    12/15/15 | Direct in vivo manipulation and imaging of calcium transients in neutrophils identify a critical role for leading-edge calcium flux.
    Beerman RW, Matty MA, Au GG, Looger LL, Choudhury KR, Keller PJ, Tobin DM
    Cell Reports. 2015 Dec 15;13(10):2107-17. doi: 10.1016/j.celrep.2015.11.010

    Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.

    View Publication Page
    12/11/15 | Efficient classifier training to minimize false merges in electron microscopy segmentation.
    Parag T, Ciresan D, Giusti A
    IEEE International Conference on Computer Vision. 2015:657-65
    12/01/15 | Emotor control: computations underlying bodily resource allocation, emotions, and confidence.
    Kepecs A, Mensh BD
    Dialogues in Clinical Neuroscience. 2015 Dec;17(4):391-401

    Emotional processes are central to behavior, yet their deeply subjective nature has been a challenge for neuroscientific study as well as for psychiatric diagnosis. Here we explore the relationships between subjective feelings and their underlying brain circuits from a computational perspective. We apply recent insights from systems neuroscience-approaching subjective behavior as the result of mental computations instantiated in the brain-to the study of emotions. We develop the hypothesis that emotions are the product of neural computations whose motor role is to reallocate bodily resources mostly gated by smooth muscles. This "emotor" control system is analagous to the more familiar motor control computations that coordinate skeletal muscle movements. To illustrate this framework, we review recent research on "confidence." Although familiar as a feeling, confidence is also an objective statistical quantity: an estimate of the probability that a hypothesis is correct. This model-based approach helped reveal the neural basis of decision confidence in mammals and provides a bridge to the subjective feeling of confidence in humans. These results have important implications for psychiatry, since disorders of confidence computations appear to contribute to a number of psychopathologies. More broadly, this computational approach to emotions resonates with the emerging view that psychiatric nosology may be best parameterized in terms of disorders of the cognitive computations underlying complex behavior.

    View Publication Page
    12/02/15 | Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila
    Hige T, Aso Y, Modi M, Rubin GM, Turner GC
    Neuron. 2015 Dec 2;88(5):985-98. doi: 10.1016/j.neuron.2015.11.003

    Although associative learning has been localized to specific brain areas in many animals, identifying the underlying synaptic processes in vivo has been difficult. Here, we provide the first demonstration of long-term synaptic plasticity at the output site of the Drosophila mushroom body. Pairing an odor with activation of specific dopamine neurons induces both learning and odor-specific synaptic depression. The plasticity induction strictly depends on the temporal order of the two stimuli, replicating the logical requirement for associative learning. Furthermore, we reveal that dopamine action is confined to and distinct across different anatomical compartments of the mushroom body lobes. Finally, we find that overlap between sparse representations of different odors defines both stimulus specificity of the plasticity and generalizability of associative memories across odors. Thus, the plasticity we find here not only manifests important features of associative learning but also provides general insights into how a sparse sensory code is read out.

    View Publication Page
    12/17/15 | Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila.
    Tan L, Zhang KX, Pecot MY, Nagarkar-Jaiswal S, Lee P, Takemura S, McEwen JM, Nern A, Xu S, Tadros W, Chen Z, Zinn K, Bellen HJ, Morey M, Zipursky SL
    Cell. 2015 Dec 17;163(7):1756-69. doi: 10.1016/j.cell.2015.11.021

    Information processing relies on precise patterns of synapses between neurons. The cellular recognition mechanisms regulating this specificity are poorly understood. In the medulla of the Drosophila visual system, different neurons form synaptic connections in different layers. Here, we sought to identify candidate cell recognition molecules underlying this specificity. Using RNA sequencing (RNA-seq), we show that neurons with different synaptic specificities express unique combinations of mRNAs encoding hundreds of cell surface and secreted proteins. Using RNA-seq and protein tagging, we demonstrate that 21 paralogs of the Dpr family, a subclass of immunoglobulin (Ig)-domain containing proteins, are expressed in unique combinations in homologous neurons with different layer-specific synaptic connections. Dpr interacting proteins (DIPs), comprising nine paralogs of another subclass of Ig-containing proteins, are expressed in a complementary layer-specific fashion in a subset of synaptic partners. We propose that pairs of Dpr/DIP paralogs contribute to layer-specific patterns of synaptic connectivity.

    View Publication Page
    Svoboda LabFreeman Lab
    12/23/15 | Neural coding in barrel cortex during whisker-guided locomotion.
    Sofroniew NJ, Vlasov YA, Andrew Hires S, Freeman J, Svoboda K
    eLife. 2015 Dec 23;4:. doi: 10.7554/eLife.12559

    Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits.

    View Publication Page
    12/03/15 | Neural coding of perceived odor intensity.
    Sirotin YB, Shusterman R, Rinberg D
    eNeuro. 2015 Nov-Dec;2(6):. doi: 10.1523/ENEURO.0083-15.2015

    Stimulus intensity is a fundamental perceptual feature in all sensory systems. In olfaction, perceived odor intensity depends on at least two variables: odor concentration; and duration of the odor exposure or adaptation. To examine how neural activity at early stages of the olfactory system represents features relevant to intensity perception, we studied the responses of mitral/tufted cells (MTCs) while manipulating odor concentration and exposure duration. Temporal profiles of MTC responses to odors changed both as a function of concentration and with adaptation. However, despite the complexity of these responses, adaptation and concentration dependencies behaved similarly. These similarities were visualized by principal component analysis of average population responses and were quantified by discriminant analysis in a trial-by-trial manner. The qualitative functional dependencies of neuronal responses paralleled psychophysics results in humans. We suggest that temporal patterns of MTC responses in the olfactory bulb contribute to an internal perceptual variable: odor intensity.

    View Publication Page