Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2488 Janelia Publications

Showing 2471-2480 of 2488 results
11/01/21 | Whole-cell organelle segmentation in volume electron microscopy.
Heinrich L, Bennett D, Ackerman D, Park W, Bogovic J, Eckstein N, Petruncio A, Clements J, Pang S, Xu CS, Funke J, Korff W, Hess HF, Lippincott-Schwartz J, Saalfeld S, Weigel AV, COSEM Project Team
Nature. 2021 Nov 01;599(7883):141-46. doi: 10.1038/s41586-021-03977-3

Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM). We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.

View Publication Page
06/20/14 | Whole-cell patch-clamp recordings in freely moving animals.
Lee AK, Epsztein J, Brecht M
Methods in Molecular Biology. 2014 Jun 20;1183:263-76. doi: 10.1007/978-1-4939-1096-0_17

The patch-clamp technique and the whole-cell measurements derived from it have greatly advanced our understanding of the coding properties of individual neurons by allowing for a detailed analysis of their excitatory/inhibitory synaptic inputs, intrinsic electrical properties, and morphology. Because such measurements require a high level of mechanical stability they have for a long time been limited to in vitro and anesthetized preparations. Recently, however, a considerable amount of effort has been devoted to extending these techniques to awake restrained/head-fixed preparations allowing for the study of the input-output functions of neurons during behavior. In this chapter we describe a technique extending patch-clamp recordings to awake animals free to explore their environments.

View Publication Page
04/03/17 | Whole-cell recording in the awake brain.
Lee D, Lee AK
Cold Spring Harbor Protocols. 2017 Apr 03;2017(4):pdb.top087304. doi: 10.1101/pdb.top087304

Intracellular recording is an essential technique for investigating cellular mechanisms underlying complex brain functions. Despite the high sensitivity of the technique to mechanical disturbances, intracellular recording has been applied to awake, behaving, and even freely moving, animals. Here we summarize recent advances in these methods and their application to the measurement and manipulation of membrane potential dynamics for understanding neuronal computations in behaving animals.

View Publication Page
12/10/18 | Whole-cell, 3D and multi-color STED imaging with exchangeable fluorophores.
Spahn C, Grimm JB, Lavis LD, Lampe M, Heilemann M
Nano Letters. 2018 Dec 10;19(1):500-5. doi: 10.1021/acs.nanolett.8b04385

We demonstrate STED microscopy of whole bacterial and eukaryotic cells using fluorogenic labels that reversibly bind to their target structure. A constant exchange of labels guarantees the removal of photobleached fluorophores and their replacement by intact fluorophores, thereby circumventing bleaching-related limitations of STED super-resolution imaging. We achieve a constant labeling density and demonstrate a fluorescence signal for long and theoretically unlimited acquisition times. Using this concept, we demonstrate whole-cell, 3D, multi-color and live cell STED microscopy.

View Publication Page
12/22/14 | Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
Hajj B, Wisniewski J, El Beheiry M, Chen J, Revyakin A, Wu C, Dahan M
Proceedings of the National Academy of Sciences of the United States of America. 2014 Dec 9;111(49):17480-5. doi: 10.1073/pnas.1412396111

Single molecule-based superresolution imaging has become an essential tool in modern cell biology. Because of the limited depth of field of optical imaging systems, one of the major challenges in superresolution imaging resides in capturing the 3D nanoscale morphology of the whole cell. Despite many previous attempts to extend the application of photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) techniques into three dimensions, effective localization depths do not typically exceed 1.2 µm. Thus, 3D imaging of whole cells (or even large organelles) still demands sequential acquisition at different axial positions and, therefore, suffers from the combined effects of out-of-focus molecule activation (increased background) and bleaching (loss of detections). Here, we present the use of multifocus microscopy for volumetric multicolor superresolution imaging. By simultaneously imaging nine different focal planes, the multifocus microscope instantaneously captures the distribution of single molecules (either fluorescent proteins or synthetic dyes) throughout an ∼4-µm-deep volume, with lateral and axial localization precisions of ∼20 and 50 nm, respectively. The capabilities of multifocus microscopy to rapidly image the 3D organization of intracellular structures are illustrated by superresolution imaging of the mammalian mitochondrial network and yeast microtubules during cell division.

View Publication Page
08/11/15 | Whole-central nervous system functional imaging in larval Drosophila.
Lemon WC, Pulver SR, Höckendorf B, McDole K, Branson KM, Freeman J, Keller PJ
Nature Communications. 2015 Aug 11;6:7924. doi: 10.1038/ncomms8924

Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.

View Publication Page
05/21/14 | Wide-field feedback neurons dynamically tune early visual processing.
Tuthill JC, Nern A, Rubin GM, Reiser MB
Neuron. 2014 May 21;82(4):887-95. doi: 10.1016/j.neuron.2014.04.023

An important strategy for efficient neural coding is to match the range of cellular responses to the distribution of relevant input signals. However, the structure and relevance of sensory signals depend on behavioral state. Here, we show that behavior modifies neural activity at the earliest stages of fly vision. We describe a class of wide-field neurons that provide feedback to the most peripheral layer of the Drosophila visual system, the lamina. Using in vivo patch-clamp electrophysiology, we found that lamina wide-field neurons respond to low-frequency luminance fluctuations. Recordings in flying flies revealed that the gain and frequency tuning of wide-field neurons change during flight, and that these effects are mimicked by the neuromodulator octopamine. Genetically silencing wide-field neurons increased behavioral responses to slow-motion stimuli. Together, these findings identify a cell type that is gated by behavior to enhance neural coding by subtracting low-frequency signals from the inputs to motion detection circuits.

View Publication Page
04/01/11 | Wireless neural/EMG telemetry systems for small freely moving animals.
Harrison RR, Fotowat H, Chan R, Kier RJ, Olberg R, Leonardo A, Gabbiani F
IEEE Transactions on Biomedical Circuits and Systems. 2011 Apr;5(2):103-11. doi: 10.1109/TBCAS.2011.2131140

We have developed miniature telemetry systems that capture neural, EMG, and acceleration signals from a freely moving insect or other small animal and transmit the data wirelessly to a remote digital receiver. The systems are based on custom low-power integrated circuits (ICs) that amplify, filter, and digitize four biopotential signals using low-noise circuits. One of the chips also digitizes three acceleration signals from an off-chip microelectromechanical-system accelerometer. All information is transmitted over a wireless ~ 900-MHz telemetry link. The first unit, using a custom chip fabricated in a 0.6- μm BiCMOS process, weighs 0.79 g and runs for two hours on two small batteries. We have used this system to monitor neural and EMG signals in jumping and flying locusts as well as transdermal potentials in weakly swimming electric fish. The second unit, using a custom chip fabricated in a 0.35-μ m complementary metal-oxide semiconductor CMOS process, weighs 0.17 g and runs for five hours on a single 1.5-V battery. This system has been used to monitor neural potentials in untethered perching dragonflies.

View Publication Page
12/01/11 | Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain.
Rivera-Alba M, Vitaladevuni SN, Mischenko Y, Lu Z, Takemura S, Scheffer L, Meinertzhagen I, Chklovskii D, Polavieja G
Current Biology. 2011 Dec;21(23):2000-5. doi: 10.1016/j.cub.2011.10.022

Wiring economy has successfully explained the individual placement of neurons in simple nervous systems like that of Caenorhabditis elegans [1-3] and the locations of coarser structures like cortical areas in complex vertebrate brains [4]. However, it remains unclear whether wiring economy can explain the placement of individual neurons in brains larger than that of C. elegans. Indeed, given the greater number of neuronal interconnections in larger brains, simply minimizing the length of connections results in unrealistic configurations, with multiple neurons occupying the same position in space. Avoiding such configurations, or volume exclusion, repels neurons from each other, thus counteracting wiring economy. Here we test whether wiring economy together with volume exclusion can explain the placement of neurons in a module of the Drosophila melanogaster brain known as lamina cartridge [5-13]. We used newly developed techniques for semiautomated reconstruction from serial electron microscopy (EM) [14] to obtain the shapes of neurons, the location of synapses, and the resultant synaptic connectivity. We show that wiring length minimization and volume exclusion together can explain the structure of the lamina microcircuit. Therefore, even in brains larger than that of C. elegans, at least for some circuits, optimization can play an important role in individual neuron placement.

View Publication Page
02/03/14 | Wiring economy can account for cell body placement across species and brain areas.
Rivera-Alba M, Peng H, de Polavieja GG, Chklovskii DB
Current biology : CB. 2014 Feb 3;24:R109-10. doi: 10.1016/j.cub.2013.12.012

The placement of neuronal cell bodies relative to the neuropile differs among species and brain areas. Cell bodies can be either embedded as in mammalian cortex or segregated as in invertebrates and some other vertebrate brain areas. Why are there such different arrangements? Here we suggest that the observed arrangements may simply be a reflection of wiring economy, a general principle that tends to reduce the total volume of the neuropile and hence the volume of the inclusions in it. Specifically, we suggest that the choice of embedded versus segregated arrangement is determined by which neuronal component - the cell body or the neurite connecting the cell body to the arbor - has a smaller volume. Our quantitative predictions are in agreement with existing and new measurements.

View Publication Page