Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2485 Janelia Publications

Showing 1701-1710 of 2485 results
02/01/22 | Organization of translating secretome mRNAS on endoplasmic reticulum
Choi H, Liao Y, Yoon YJ, Grimm J, Lavis LD, Singer RH, Lippincott-Schwartz J
Biophysical Journal. 2022 Feb 01;121(3):33a. doi: 10.1016/j.bpj.2021.11.2550

The endoplasmic reticulum (ER) has a complex morphology comprised of stacked sheets, tubules, and three-way junctions, which together function as a platform for protein synthesis of membrane and secretory proteins. Specific ER subdomains are thought to be spatially organized to enable protein synthesis activity, but precisely where these domains are localized is unclear, especially relative to the plethora of organelle interactions taking place on the ER. Here, we use single-molecule tracking of ribosomes and mRNA in combination with simultaneous imaging of ER to assess the sites of membrane protein synthesis on the ER. We found that ribosomes were widely distributed throughout different ER morphologies, but the synthesis of membrane proteins (including Type I, II, and multi-spanning) and an ER luminal protein (Calreticulin) occurred primarily at three-way junctions. Lunapark played a key role in stabilizing transmembrane protein mRNA at three-way junctions. We additionally found that translating mRNAs coding for transmembrane proteins are in the vicinity of lysosomes and translate through a cap-independent but eIF2-dependent mechanism. These results support the idea that discrete ER subdomains co-exist with lysosomes to support specific types of protein synthesis activities, with ER-lysosome interactions playing an important role in the translation of secretome mRNAs.

View Publication Page
08/01/23 | Organizing memories for generalization in complementary learning systems.
Weinan Sun , Madhu Advani , Nelson Spruston , Andrew Saxe , James E. Fitzgerald
Nature Neuroscience. 2023 Aug 01;26(8):1438-1448. doi: 10.1038/s41593-023-01382-9

Our ability to remember the past is essential for guiding our future behavior. Psychological and neurobiological features of declarative memories are known to transform over time in a process known as systems consolidation. While many theories have sought to explain the time-varying role of hippocampal and neocortical brain areas, the computational principles that govern these transformations remain unclear. Here we propose a theory of systems consolidation in which hippocampal-cortical interactions serve to optimize generalizations that guide future adaptive behavior. We use mathematical analysis of neural network models to characterize fundamental performance tradeoffs in systems consolidation, revealing that memory components should be organized according to their predictability. The theory shows that multiple interacting memory systems can outperform just one, normatively unifying diverse experimental observations and making novel experimental predictions. Our results suggest that the psychological taxonomy and neurobiological organization of declarative memories reflect a system optimized for behaving well in an uncertain future.

View Publication Page
03/28/23 | Origin of wiring specificity in an olfactory map revealed by neuron type-specific, time-lapse imaging of dendrite targeting.
Wong KK, Li T, Fu T, Liu G, Lyu C, Kohani S, Xie Q, Luginbuhl DJ, Upadhyayula S, Betzig E, Luo L
eLife. 2023 Mar 28;12:. doi: 10.7554/eLife.85521

How does wiring specificity of neural maps emerge during development? Formation of the adult olfactory glomerular map begins with patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type-specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map. Specifically, birth order directs dendrite targeting in rotating and binary manners for PNs of the anterodorsal and lateral lineages, respectively. Two-photon- and adaptive optical lattice light-sheet microscope-based time-lapse imaging reveals that PN dendrites initiate active targeting with direction-dependent branch stabilization on the timescale of seconds. Moreover, PNs that are used in both the larval and adult olfactory circuits prune their larval-specific dendrites and re-extend new dendrites simultaneously to facilitate timely olfactory map organization. Our work highlights the power and necessity of type-specific neuronal access and time-lapse imaging in identifying wiring mechanisms that underlie complex patterns of functional neural maps.

View Publication Page
12/27/10 | Orphan nuclear receptors control neuronal remodeling during fly metamorphosis.
Tzumin Lee , Takeshi Awasaki
Nature Neuroscience. 2010 Dec 27;14:6-7. doi: 10.1038/nn0111-6

News & Views | Published: 27 December 2010

Orphan nuclear receptors control neuronal remodeling during fly metamorphosis

Nature Neuroscience volume 14, pages 6–7 (2011) | Download Citation

Pruning of excess branches is essential for the maturation of developing neuronal circuits. Cross-talk between TGF-β signaling and two antagonistic orphan nuclear receptors governs the pruning of larval γ neurons in the Drosophila pupa.

Neural circuits are remodeled as the brain matures or acquires new functions. Such developmental remodeling involves complex cellular changes that are tightly regulated in space and time. During metamorphosis of holometabolous insect brains, most larval functional neurons are rewired into the adult circuitry, and study of these processes has been particularly fruitful for the elucidation of the mechanisms that underlie neuron remodeling1. In metamorphosing Drosophila, nuclear signaling of the steroid hormone receptor ecdysone receptor B1 isoform (EcR-B1) cell-autonomously orchestrates neuron remodeling. Only neurons destined to remodel upregulate EcR-B1 expression before a crucial pre-pupal ecdysone pulse2. It is therefore necessary to determine the mechanisms that pattern EcR-B1 expression to understand how developmental neuronal remodeling is programmed in Drosophila.

View Publication Page
10/21/14 | Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.
Donnelly NA, Holtzman T, Rich PD, Nevado-Holgado AJ, Fernando AB, Van Dijck G, Holzhammer T, Paul O, Ruther P, Paulsen O, Robbins TW, Dalley JW
PLoS One. 2014 Oct 21;9(10):e111300. doi: 10.1371/journal.pone.0111300

Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.

View Publication Page
Pastalkova Lab
07/18/15 | Oscillatory patterns in hippocampus under light and deep isoflurane anesthesia closely mirror prominent brain states in awake animals.
Lustig B, Wang Y, Pastalkova E
Hippocampus. 2015 Jul 18;26(1):102-9. doi: 10.1002/hipo.22494

The hippocampus exhibits a variety of distinct states of activity under different conditions. For instance the rhythmic patterns of activity orchestrated by the theta oscillation during running and REM sleep are markedly different from the large irregular activity (LIA) observed during awake resting and slow wave sleep. We found that under different levels of isoflurane anesthesia activity in the hippocampus of rats displays two distinct states which have several qualities that mirror the theta and LIA states. These data provide further evidence that the two states are intrinsic modes of the hippocampus; while also characterizing a preparation that could be useful for studying the natural activity states in hippocampus. This article is protected by copyright. All rights reserved.

View Publication Page
Druckmann Lab
01/01/10 | Over-complete representations on recurrent neural networks can support persistent percepts.
Druckmann S, Chklovskii D
Neural Information Processing Systems 23 (NIPS 2010). 2010;23:541-9

A striking aspect of cortical neural networks is the divergence of a relatively small number of input channels from the peripheral sensory apparatus into a large number of cortical neurons, an over-complete representation strategy. Cortical neurons are then connected by a sparse network of lateral synapses. Here we propose that such architecture may increase the persistence of the representation of an incoming stimulus, or a percept. We demonstrate that for a family of networks in which the receptive field of each neuron is re-expressed by its outgoing connections, a represented percept can remain constant despite changing activity. We term this choice of connectivity REceptive FIeld REcombination (REFIRE) networks. The sparse REFIRE network may serve as a high-dimensional integrator and a biologically plausible model of the local cortical circuit.

View Publication Page
Gonen Lab
04/02/13 | Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy.
Nannenga BL, Iadanza MG, Vollmar BS, Gonen T
Current Protocols in Protein Science . 2013 Apr 2;Chapter 17:Unit 17.15. doi: 10.1002/0471140864.ps1715s72

Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer. The key to a successful electron crystallographic experiment is the crystallization, or reconstitution, of the protein of interest. This unit describes ways in which protein can be expressed, purified, and reconstituted into well-ordered two-dimensional crystals. A protocol is also provided for negative stain electron microscopy as a tool for screening crystallization trials. When large and well-ordered crystals are obtained, the structures of both protein and its surrounding membrane can be determined to atomic resolution.

View Publication Page
12/29/15 | P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila.
Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ
eLife. 2015 Dec 29;4:. doi: 10.7554/eLife.11346

How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner.

View Publication Page
05/01/11 | PALM and STORM: unlocking live-cell super-resolution.
Henriques R, Griffiths C, Hesper Rego E, Mhlanga MM
Biopolymers. 2011 May;95(5):322-31. doi: 10.1002/bip.21586

Live-cell fluorescence light microscopy has emerged as an important tool in the study of cellular biology. The development of fluorescent markers in parallel with super-resolution imaging systems has pushed light microscopy into the realm of molecular visualization at the nanometer scale. Resolutions previously only attained with electron microscopes are now within the grasp of light microscopes. However, until recently, live-cell imaging approaches have eluded super-resolution microscopy, hampering it from reaching its full potential for revealing the dynamic interactions in biology occurring at the single molecule level. Here we examine recent advances in the super-resolution imaging of living cells by reviewing recent breakthroughs in single molecule localization microscopy methods such as PALM and STORM to achieve this important goal.

View Publication Page