Filter
Associated Lab
- Aguilera Castrejon Lab (1) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (52) Apply Ahrens Lab filter
- Aso Lab (40) Apply Aso Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (100) Apply Betzig Lab filter
- Beyene Lab (8) Apply Beyene Lab filter
- Bock Lab (14) Apply Bock Lab filter
- Branson Lab (49) Apply Branson Lab filter
- Card Lab (35) Apply Card Lab filter
- Cardona Lab (44) Apply Cardona Lab filter
- Chklovskii Lab (10) Apply Chklovskii Lab filter
- Clapham Lab (13) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (8) Apply Darshan Lab filter
- Dickson Lab (32) Apply Dickson Lab filter
- Druckmann Lab (21) Apply Druckmann Lab filter
- Dudman Lab (38) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (4) Apply Egnor Lab filter
- Espinosa Medina Lab (15) Apply Espinosa Medina Lab filter
- Feliciano Lab (7) Apply Feliciano Lab filter
- Fetter Lab (31) Apply Fetter Lab filter
- Fitzgerald Lab (16) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (38) Apply Funke Lab filter
- Gonen Lab (59) Apply Gonen Lab filter
- Grigorieff Lab (34) Apply Grigorieff Lab filter
- Harris Lab (50) Apply Harris Lab filter
- Heberlein Lab (13) Apply Heberlein Lab filter
- Hermundstad Lab (22) Apply Hermundstad Lab filter
- Hess Lab (73) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (42) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Karpova Lab (13) Apply Karpova Lab filter
- Keleman Lab (8) Apply Keleman Lab filter
- Keller Lab (61) Apply Keller Lab filter
- Koay Lab (2) Apply Koay Lab filter
- Lavis Lab (136) Apply Lavis Lab filter
- Lee (Albert) Lab (29) Apply Lee (Albert) Lab filter
- Leonardo Lab (19) Apply Leonardo Lab filter
- Li Lab (4) Apply Li Lab filter
- Lippincott-Schwartz Lab (95) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (1) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (56) Apply Liu (Zhe) Lab filter
- Looger Lab (137) Apply Looger Lab filter
- Magee Lab (31) Apply Magee Lab filter
- Menon Lab (12) Apply Menon Lab filter
- Murphy Lab (6) Apply Murphy Lab filter
- O'Shea Lab (5) Apply O'Shea Lab filter
- Otopalik Lab (1) Apply Otopalik Lab filter
- Pachitariu Lab (35) Apply Pachitariu Lab filter
- Pastalkova Lab (5) Apply Pastalkova Lab filter
- Pavlopoulos Lab (7) Apply Pavlopoulos Lab filter
- Pedram Lab (4) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (45) Apply Reiser Lab filter
- Riddiford Lab (20) Apply Riddiford Lab filter
- Romani Lab (31) Apply Romani Lab filter
- Rubin Lab (105) Apply Rubin Lab filter
- Saalfeld Lab (46) Apply Saalfeld Lab filter
- Satou Lab (1) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (50) Apply Schreiter Lab filter
- Sgro Lab (1) Apply Sgro Lab filter
- Shroff Lab (30) Apply Shroff Lab filter
- Simpson Lab (18) Apply Simpson Lab filter
- Singer Lab (37) Apply Singer Lab filter
- Spruston Lab (57) Apply Spruston Lab filter
- Stern Lab (73) Apply Stern Lab filter
- Sternson Lab (47) Apply Sternson Lab filter
- Stringer Lab (31) Apply Stringer Lab filter
- Svoboda Lab (131) Apply Svoboda Lab filter
- Tebo Lab (9) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (18) Apply Tillberg Lab filter
- Tjian Lab (17) Apply Tjian Lab filter
- Truman Lab (58) Apply Truman Lab filter
- Turaga Lab (38) Apply Turaga Lab filter
- Turner Lab (26) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (18) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (6) Apply Wang (Shaohe) Lab filter
- Wu Lab (8) Apply Wu Lab filter
- Zlatic Lab (26) Apply Zlatic Lab filter
- Zuker Lab (5) Apply Zuker Lab filter
Associated Project Team
- CellMap (12) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (2) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (10) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (53) Apply FlyEM filter
- FlyLight (49) Apply FlyLight filter
- GENIE (45) Apply GENIE filter
- Integrative Imaging (3) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (18) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (45) Apply Transcription Imaging filter
Associated Support Team
- Project Pipeline Support (3) Apply Project Pipeline Support filter
- Anatomy and Histology (18) Apply Anatomy and Histology filter
- Cryo-Electron Microscopy (34) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (15) Apply Electron Microscopy filter
- Gene Targeting and Transgenics (11) Apply Gene Targeting and Transgenics filter
- Integrative Imaging (17) Apply Integrative Imaging filter
- Invertebrate Shared Resource (40) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (37) Apply Janelia Experimental Technology filter
- Management Team (1) Apply Management Team filter
- Molecular Genomics (15) Apply Molecular Genomics filter
- Primary & iPS Cell Culture (14) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (47) Apply Project Technical Resources filter
- Quantitative Genomics (19) Apply Quantitative Genomics filter
- Scientific Computing Software (91) Apply Scientific Computing Software filter
- Scientific Computing Systems (6) Apply Scientific Computing Systems filter
- Viral Tools (14) Apply Viral Tools filter
- Vivarium (7) Apply Vivarium filter
Publication Date
- 2025 (85) Apply 2025 filter
- 2024 (221) Apply 2024 filter
- 2023 (160) Apply 2023 filter
- 2022 (167) Apply 2022 filter
- 2021 (175) Apply 2021 filter
- 2020 (177) Apply 2020 filter
- 2019 (177) Apply 2019 filter
- 2018 (206) Apply 2018 filter
- 2017 (186) Apply 2017 filter
- 2016 (191) Apply 2016 filter
- 2015 (195) Apply 2015 filter
- 2014 (190) Apply 2014 filter
- 2013 (136) Apply 2013 filter
- 2012 (112) Apply 2012 filter
- 2011 (98) Apply 2011 filter
- 2010 (61) Apply 2010 filter
- 2009 (56) Apply 2009 filter
- 2008 (40) Apply 2008 filter
- 2007 (21) Apply 2007 filter
- 2006 (3) Apply 2006 filter
2657 Janelia Publications
Showing 1711-1720 of 2657 resultsAlcohol use disorder (AUD) is characterized by loss of control in limiting alcohol intake. This may involve intermittent periods of abstinence followed by alcohol seeking and, consequently, relapse. However, little is understood of the molecular mechanisms underlying the impact of alcohol deprivation on behavior. Using a new Drosophila melanogaster repeated intermittent alcohol exposure model, we sought to identify how ethanol deprivation alters spontaneous behavior, determine the associated neural structures, and reveal correlated changes in brain gene expression. We found that repeated intermittent ethanol-odor exposures followed by ethanol-deprivation dynamically induces behaviors associated with a negative affect state. Although behavioral states broadly mapped to many brain regions, persistent changes in social behaviors mapped to the mushroom body and surrounding neuropil. This occurred concurrently with changes in expression of genes associated with sensory responses, neural plasticity, and immunity. Like social behaviors, immune response genes were upregulated following three-day repeated intermittent ethanol-odor exposures and persisted with one or two days of ethanol-deprivation, suggesting an enduring change in molecular function. Our study provides a framework for identifying how ethanol deprivation alters behavior with correlated underlying circuit and molecular changes.
While insects such as are flying, aerodynamic instabilities require that they make millisecond time scale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units-prominent components of the fly's steering muscle system-modulate specific elements of the PI controller: the angular displacement (integral) and angular velocity (proportional), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies.
While insects like Drosophila are flying, aerodynamic instabilities require that they make millisecond-timescale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units—prominent components of the fly’s steering muscles system—modulate specific elements of the PI controller: the angular displacement (integral, I) and angular velocity (proportional, P), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies.
While insects like Drosophila are flying, aerodynamic instabilities require that they make millisecond-timescale adjustments to their wing motion to stay aloft and on course. These stabilization reflexes can be modeled as a proportional-integral (PI) controller; however, it is unclear how such control might be instantiated in insects at the level of muscles and neurons. Here, we show that the b1 and b2 motor units—prominent components of the fly's steering muscles system—modulate specific elements of the PI controller: the angular displacement (integral, I) and angular velocity (proportional, P), respectively. Moreover, these effects are observed only during the stabilization of pitch. Our results provide evidence for an organizational principle in which each muscle contributes to a specific functional role in flight control, a finding that highlights the power of using top-down behavioral modeling to guide bottom-up cellular manipulation studies.
Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. Thirty three postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.
Mice lacking leptin receptors are grossly obese and diabetic, in part due to dysfunction in brain circuits important for energy homeostasis. Transplantation of leptin receptor-expressing hypothalamic progenitor neurons into the brains of leptin receptor deficient mice led to integration into neural circuits, reduced obesity, and normalized circulating glucose levels.
Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial β-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.
Binding between DIP and Dpr neuronal recognition proteins has been proposed to regulate synaptic connections between lamina and medulla neurons in the Drosophila visual system. Each lamina neuron was previously shown to express many Dprs. Here, we demonstrate, by contrast, that their synaptic partners typically express one or two DIPs, with binding specificities matched to the lamina neuron-expressed Dprs. A deeper understanding of the molecular logic of DIP/Dpr interaction requires quantitative studies on the properties of these proteins. We thus generated a quantitative affinity-based DIP/Dpr interactome for all DIP/Dpr protein family members. This revealed a broad range of affinities and identified homophilic binding for some DIPs and some Dprs. These data, along with full-length ectodomain DIP/Dpr and DIP/DIP crystal structures, led to the identification of molecular determinants of DIP/Dpr specificity. This structural knowledge, along with a comprehensive set of quantitative binding affinities, provides new tools for functional studies in vivo.
The central amygdala (CEA) has been richly studied for interpreting function and behavior according to specific cell types and circuits. Such work has typically defined molecular cell types by classical inhibitory marker genes; consequently, whether marker-gene-defined cell types exhaustively cover the CEA and co-vary with connectivity remains unresolved. Here, we combined single-cell RNA sequencing, multiplexed fluorescent in situ hybridization, immunohistochemistry, and long-range projection mapping to derive a “bottom-up” understanding of CEA cell types. In doing so, we identify two major cell types, encompassing one-third of all CEA neurons, that have gone unresolved in previous studies. In spatially mapping these novel types, we identify a non-canonical CEA subdomain associated with Nr2f2 expression and uncover an Isl1-expressing medial cell type that accounts for many long-range CEA projections. Our results reveal new CEA organizational principles across cell types and spatial scales and provide a framework for future work examining cell-type-specific behavior and function.
The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.