Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2695 Janelia Publications

Showing 2371-2380 of 2695 results
Wu Lab
02/06/14 | The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2A.Z-H2B dimer.
Hong J, Feng H, Wang F, Ranjan A, Chen J, Jiang J, Ghirlando R, Xiao TS, Wu C, Bai Y
Molecular Cell. 2014 Feb 6;53:498-505. doi: 10.1016/j.molcel.2014.01.010

Histone variant H2A.Z-containing nucleosomes exist at most eukaryotic promoters and play important roles in gene transcription and genome stability. The multisubunit nucleosome-remodeling enzyme complex SWR1, conserved from yeast to mammals, catalyzes the ATP-dependent replacement of histone H2A in canonical nucleosomes with H2A.Z. How SWR1 catalyzes the replacement reaction is largely unknown. Here, we determined the crystal structure of the N-terminal region (599-627) of the catalytic subunit Swr1, termed Swr1-Z domain, in complex with the H2A.Z-H2B dimer at 1.78 Å resolution. The Swr1-Z domain forms a 310 helix and an irregular chain. A conserved LxxLF motif in the Swr1-Z 310 helix specifically recognizes the αC helix of H2A.Z. Our results show that the Swr1-Z domain can deliver the H2A.Z-H2B dimer to the DNA-(H3-H4)2 tetrasome to form the nucleosome by a histone chaperone mechanism.

View Publication Page
02/29/24 | The cell-type-specific spatial organization of the anterior thalamic nuclei of the mouse brain.
Kapustina M, Zhang AA, Tsai JY, Bristow BN, Kraus L, Sullivan KE, Erwin SR, Wang L, Stach TR, Clements J, Lemire AL, Cembrowski MS
Cell Reports. 2024 Feb 29;43(3):113842. doi: 10.1016/j.celrep.2024.113842

Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.

View Publication Page
02/13/23 | The challenges and opportunities of open-access microscopy facilities.
Cartwright HN, Hobson CM, Chew T, Reiche MA, Aaron JS
Journal of Microscopy. 2023 Feb 13:. doi: 10.1111/jmi.13176

Microscopy core facilities are increasingly utilized research resources, but they are generally only available to users within the host institution. Such localized access misses an opportunity to facilitate research across a broader user base. Here, we present the model of an open-access microscopy facility, using the Advanced Imaging Center (AIC) at Howard Hughes Medical Institute Janelia Research Campus as an example. The AIC has pioneered a model whereby advanced microscopy technologies and expertise are made accessible to researchers on a global scale. We detail our experiences in addressing the considerable challenges associated with this model for those who may be interested in launching an open-access imaging facility. Importantly, we focus on how this model can empower researchers, particularly those from resource-constrained settings. This article is protected by copyright. All rights reserved.

View Publication Page
01/01/13 | The chemistry of small-molecule fluorogenic probes.
Grimm JB, Heckman LM, Lavis LD
Progress in Molecular Biology and Translational Science;113:1-34. doi: 10.1016/B978-0-12-386932-6.00001-6

Chemical fluorophores find wide use in biology to detect and visualize different phenomena. A key advantage of small-molecule dyes is the ability to construct compounds where fluorescence is activated by chemical or biochemical processes. Fluorogenic molecules, in which fluorescence is activated by enzymatic activity, light, or environmental changes, enable advanced bioassays and sophisticated imaging experiments. Here, we detail the collection of fluorophores and highlight both general strategies and unique approaches that are employed to control fluorescence using chemistry.

View Publication Page
01/23/18 | The Chlamydia type III effector TarP alters the dynamics and organization of host focal adhesions.
Pedrosa AT, Nogueira AT, Thwaites TR, Aaron J, Chew T, Carabeo RA
bioRxiv. 2018 Jan 23:. doi: 10.1101/250563

Bacterial infection of mucosal epithelial cells triggers cell exfoliation to limit the dissemination of infection within the tissue. Therefore, mucosal pathogens must possess strategies to counteract cell extrusion in response to infection. Chlamydia trachomatis spends most of its intracellular development in the non-infectious form. Thus, premature host cell extrusion is detrimental to the pathogen. We demonstrate that C. trachomatis alters the dynamics of focal adhesions. Live-cell microscopy showed that focal adhesions in C. trachomatis-infected cells displayed increased stability. In contrast, focal adhesions in mock-infected cells readily disassembled upon inhibition of myosin II by blebbisttin. Super-resolution microscopy revealed a reorganization of paxillin and FAK in infected cells. Ectopically expressed type III effector TarP localized to focal adhesions, leading to their stabilization and reorganization in a vinculin-dependent manner. Overall, the results indicate that C. trachomatis possesses a dedicated mechanism to regulate host cell focal adhesion dynamics.

View Publication Page
04/01/16 | The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue.
Wan Y, Almeida AD, Rulands S, Chalour N, Muresan L, Wu Y, Simons BD, He J, Harris WA
Development (Cambridge, England). 2016 Apr 01;143(7):1099-107. doi: 10.1242/dev.133314

Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime.

View Publication Page
12/07/20 | The claustrum.
Smith JB, Lee AK, Jackson J
Current Biology. 2020 Dec 07;30(23):R1401-R1406. doi: 10.1016/j.cub.2020.09.069

The claustrum is a brain region that has been investigated for over 200 years, yet its precise function remains unknown. In the final posthumously released article of Francis Crick, written with Christof Koch, the claustrum was suggested to be critically linked to consciousness. Though the claustrum remained relatively obscure throughout the last half century, it has enjoyed a renewed interest in the last 15 years since Crick and Koch's article. During this time, the claustrum, like many other brain regions, has been studied with the myriad of modern systems neuroscience tools that have been made available by the intersection of genetic and viral technologies. This has uncovered new information about its anatomical connectivity and physiological properties and begun to reveal aspects of its function. From these studies, one clear consensus has emerged which supports Crick and Koch's primary interest in the claustrum: the claustrum has widespread extensive connectivity with the entire cerebral cortex, suggesting a prominent role in 'higher order processes'.

View Publication Page
Zuker Lab
02/18/11 | The coding of temperature in the Drosophila brain.
Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS
Cell. 2011 Feb 18;144(4):614-24. doi: 10.1016/j.cell.2011.01.028

Thermosensation is an indispensable sensory modality. Here, we study temperature coding in Drosophila, and show that temperature is represented by a spatial map of activity in the brain. First, we identify TRP channels that function in the fly antenna to mediate the detection of cold stimuli. Next, we identify the hot-sensing neurons and show that hot and cold antennal receptors project onto distinct, but adjacent glomeruli in the Proximal-Antennal-Protocerebrum (PAP) forming a thermotopic map in the brain. We use two-photon imaging to reveal the functional segregation of hot and cold responses in the PAP, and show that silencing the hot- or cold-sensing neurons produces animals with distinct and discrete deficits in their behavioral responses to thermal stimuli. Together, these results demonstrate that dedicated populations of cells orchestrate behavioral responses to different temperature stimuli, and reveal a labeled-line logic for the coding of temperature information in the brain.

View Publication Page
Gonen Lab
01/01/13 | The collection of high-resolution electron diffraction data.
Gonen T
Methods in Molecular Biology. 2013;955:153-169. doi: 10.1007/978-1-62703-176-9_9

A number of atomic-resolution structures of membrane proteins (better than 3Å resolution) have been determined recently by electron crystallography. While this technique was established more than 40 years ago, it is still in its infancy with regard to the two-dimensional (2D) crystallization, data collection, data analysis, and protein structure determination. In terms of data collection, electron crystallography encompasses both image acquisition and electron diffraction data collection. Other chapters in this volume outline protocols for image collection and analysis. This chapter, however, outlines detailed protocols for data collection by electron diffraction. These include microscope setup, electron diffraction data collection, and troubleshooting.

View Publication Page
05/01/16 | The collection of MicroED data for macromolecular crystallography.
Shi D, Nannenga BL, de la Cruz MJ, Liu J, Sawtelle S, Calero G, Reyes FE, Hattne J, Gonen T
Nature Protocols. 2016 May;11(5):895-904. doi: 10.1038/nprot.2016.046

The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.

View Publication Page