Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

1286 Janelia Publications

Showing 51-60 of 1286 results
09/05/17 | A general method to fine-tune fluorophores for live-cell and in vivo imaging.
Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, Lavis LD
Nature Methods. 2017 Oct;14(10):987-994. doi: 10.1038/nmeth.4403

Pushing the frontier of fluorescence microscopy requires the design of enhanced fluorophores with finely tuned properties. We recently discovered that incorporation of four-membered azetidine rings into classic fluorophore structures elicits substantial increases in brightness and photostability, resulting in the Janelia Fluor (JF) series of dyes. We refined and extended this strategy, finding that incorporation of 3-substituted azetidine groups allows rational tuning of the spectral and chemical properties of rhodamine dyes with unprecedented precision. This strategy allowed us to establish principles for fine-tuning the properties of fluorophores and to develop a palette of new fluorescent and fluorogenic labels with excitation ranging from blue to the far-red. Our results demonstrate the versatility of these new dyes in cells, tissues and animals.

View Publication Page
09/05/17 | Dissection of the Drosophila neuropeptide F circuit using a high-throughput two-choice assay.
Shao L, Saver M, Chung P, Ren Q, Lee T, Kent CF, Heberlein U
Proceedings of the National Academy of Sciences of the United States of America. 2017 Sep 05:. doi: 10.1073/pnas.1710552114

In their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.

View Publication Page
09/01/17 | A dynamic interplay of enhancer elements regulates Klf4 expression in naïve pluripotency.
Xie L, Torigoe SE, Xiao J, Mai DH, Li L, Davis FP, Dong P, Marie-Nelly H, Grimm J, Lavis L, Darzacq X, Cattoglio C, Liu Z, Tjian R
Genes & Development. 2017 Sep 01;31(17):1795-1808. doi: 10.1101/gad.303321.117

Transcription factor (TF)-directed enhanceosome assembly constitutes a fundamental regulatory mechanism driving spatiotemporal gene expression programs during animal development. Despite decades of study, we know little about the dynamics or order of events animating TF assembly at cis-regulatory elements in living cells and the long-range molecular "dialog" between enhancers and promoters. Here, combining genetic, genomic, and imaging approaches, we characterize a complex long-range enhancer cluster governing Krüppel-like factor 4 (Klf4) expression in naïve pluripotency. Genome editing by CRISPR/Cas9 revealed that OCT4 and SOX2 safeguard an accessible chromatin neighborhood to assist the binding of other TFs/cofactors to the enhancer. Single-molecule live-cell imaging uncovered that two naïve pluripotency TFs, STAT3 and ESRRB, interrogate chromatin in a highly dynamic manner, in which SOX2 promotes ESRRB target search and chromatin-binding dynamics through a direct protein-tethering mechanism. Together, our results support a highly dynamic yet intrinsically ordered enhanceosome assembly to maintain the finely balanced transcription program underlying naïve pluripotency.

View Publication Page
08/31/17 | Reactive oxygen species regulate activity-dependent neuronal structural plasticity in Drosophila.
Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Morarach K, Sweeney ST, Landgraf M
bioRxiv. 2017 Aug 31:081968. doi: 10.1101/081968

Neurons are inherently plastic, adjusting their structure, connectivity and excitability in response to changes in activity. How neurons sense changes in their activity level and then transduce these to structural changes remains to be fully elucidated. Working with the Drosophila larval locomotor network, we show that neurons use reactive oxygen species (ROS), metabolic byproducts, to monitor their activity. ROS signals are both necessary and sufficient for activity-dependent structural adjustments of both pre- and postsynaptic terminals and for network output, as measured by larval crawling behavior. We find the highly conserved Parkinsons disease-linked protein DJ-1b acts as a redox sensor in neurons where it regulates pre- and postsynaptic structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. Neuronal ROS thus play an important physiological role as second messengers required for neuronal and network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.

View Publication Page
08/30/17 | A circuit node that integrates convergent input from neuromodulatory and social behavior-promoting neurons to control aggression in Drosophila.
Watanabe K, Chiu H, Pfeiffer BD, Wong AM, Hoopfer ED, Rubin GM, Anderson DJ
Neuron. 2017 Aug 30;95(5):1112-1128.e7. doi: 10.1016/j.neuron.2017.08.017

Diffuse neuromodulatory systems such as norepinephrine (NE) control brain-wide states such as arousal, but whether they control complex social behaviors more specifically is not clear. Octopamine (OA), the insect homolog of NE, is known to promote both arousal and aggression. We have performed a systematic, unbiased screen to identify OA receptor-expressing neurons (OARNs) that control aggression in Drosophila. Our results uncover a tiny population of male-specific aSP2 neurons that mediate a specific influence of OA on aggression, independent of any effect on arousal. Unexpectedly, these neurons receive convergent input from OA neurons and P1 neurons, a population of FruM(+) neurons that promotes male courtship behavior. Behavioral epistasis experiments suggest that aSP2 neurons may constitute an integration node at which OAergic neuromodulation can bias the output of P1 neurons to favor aggression over inter-male courtship. These results have potential implications for thinking about the role of related neuromodulatory systems in mammals.

View Publication Page
08/29/17 | Experimental and statistical reevaluation provides no evidence for Drosophila courtship song rhythms.
Stern DL, Clemens J, Coen P, Calhoun AJ, Hogenesch JB, Arthur BJ, Murthy M
Proceedings of the National Academy of Sciences of the United States of America. 2017 Aug 29:. doi: 10.1073/pnas.1707471114

From 1980 to 1992, a series of influential papers reported on the discovery, genetics, and evolution of a periodic cycling of the interval between Drosophila male courtship song pulses. The molecular mechanisms underlying this periodicity were never described. To reinitiate investigation of this phenomenon, we previously performed automated segmentation of songs but failed to detect the proposed rhythm [Arthur BJ, et al. (2013) BMC Biol 11:11; Stern DL (2014) BMC Biol 12:38]. Kyriacou et al. [Kyriacou CP, et al. (2017) Proc Natl Acad Sci USA 114:1970-1975] report that we failed to detect song rhythms because (i) our flies did not sing enough and (ii) our segmenter did not identify many of the song pulses. Kyriacou et al. manually annotated a subset of our recordings and reported that two strains displayed rhythms with genotype-specific periodicity, in agreement with their original reports. We cannot replicate this finding and show that the manually annotated data, the original automatically segmented data, and a new dataset provide no evidence for either the existence of song rhythms or song periodicity differences between genotypes. Furthermore, we have reexamined our methods and analysis and find that our automated segmentation method was not biased to prevent detection of putative song periodicity. We conclude that there is no evidence for the existence of Drosophila courtship song rhythms.

View Publication Page
08/29/17 | Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells.
Yang C, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, Lee T
Development (Cambridge, England). 2017 Aug 29;144(19):3454-64. doi: 10.1242/dev.149500

The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a "decommissioning" phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the Mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages.

View Publication Page
08/23/17 | Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions.
McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F, Deschênes M, Kleinfeld D
Neuroscience. 2017 Aug 23;368:152-70. doi: 10.1016/j.neuroscience.2017.08.034

The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space. Sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. The elucidation of synergistic coordination of orofacial motor actions to form behaviors, beyond that of a common rhythmic component, represents a work in progress that encompasses feedback through the midbrain and forebrain as well as hindbrain areas.

View Publication Page
08/19/17 | Community-based benchmarking improves spike inference from two-photon calcium imaging data.
Berens P, Freeman J, Deneux T, Chenkov N, McColgan T, Speiser A, Macke JH, Turaga SC, Mineault P, Rupprecht P, Gerhard S, Friedrich RW, Friedrich J, Paninski L, Pachitariu M, Harris KD, Bolte B, Machado TA, Ringach D, etal
bioRxiv. 2017 Aug 17:177956. doi:

In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike trains from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

View Publication Page
08/18/17 | Contractile actomyosin arcs promote the activation of primary mouse T cells in a ligand-dependent manner.
Hong J, Murugesan S, Betzig E, Hammer JA
PLoS One. 2017;12(8):e0183174. doi: 10.1371/journal.pone.0183174

Mechano-transduction is an emerging but still poorly understood component of T cell activation. Here we investigated the ligand-dependent contribution made by contractile actomyosin arcs populating the peripheral supramolecular activation cluster (pSMAC) region of the immunological synapse (IS) to T cell receptor (TCR) microcluster transport and proximal signaling in primary mouse T cells. Using super resolution microscopy, OT1-CD8+ mouse T cells, and two ovalbumin (OVA) peptides with different affinities for the TCR, we show that the generation of organized actomyosin arcs depends on ligand potency and the ability of myosin 2 to contract actin filaments. While weak ligands induce disorganized actomyosin arcs, strong ligands result in organized actomyosin arcs that correlate well with tension-sensitive CasL phosphorylation and the accumulation of ligands at the IS center. Blocking myosin 2 contractility greatly reduces the difference in the extent of Src and LAT phosphorylation observed between the strong and the weak ligand, arguing that myosin 2-dependent force generation within actin arcs contributes to ligand discrimination. Together, our data are consistent with the idea that actomyosin arcs in the pSMAC region of the IS promote a mechano-chemical feedback mechanism that amplifies the accumulation of critical signaling molecules at the IS.

View Publication Page