Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

206 Janelia Publications

Showing 41-50 of 206 results
Your Criteria:
    10/22/18 | Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope.
    Scott BB, Thiberge SY, Guo C, Tervo DG, Brody CD, Karpova AY, Tank DW
    Neuron. 2018 Oct 22:. doi: 10.1016/j.neuron.2018.09.050

    Widefield imaging of calcium dynamics is an emerging method for mapping regional neural activity but is currently limited to restrained animals. Here we describe cScope, a head-mounted widefield macroscope developed to image large-scale cortical dynamics in rats during natural behavior. cScope provides a 7.8 × 4 mm field of view and dual illumination paths for both fluorescence and hemodynamic correction and can be fabricated at low cost using readily attainable components. We also report the development of Thy-1 transgenic rat strains with widespread neuronal expression of the calcium indicator GCaMP6f. We combined these two technologies to image large-scale calcium dynamics in the dorsal neocortex during a visual evidence accumulation task. Quantitative analysis of task-related dynamics revealed multiple regions having neural signals that encode behavioral choice and sensory evidence. Our results provide a new transgenic resource for calcium imaging in rats and extend the domain of head-mounted microscopes to larger-scale cortical dynamics.

    View Publication Page
    10/18/18 | Astrocytes integrate and drive action potential firing in inhibitory subnetworks.
    Deemyad T, Lüthi J, Spruston N
    Nature Communications. 2018 Oct 18;9(1):4336. doi: 10.1038/s41467-018-06338-3

    Many brain functions depend on the ability of neural networks to temporally integrate transient inputs to produce sustained discharges. This can occur through cell-autonomous mechanisms in individual neurons and through reverberating activity in recurrently connected neural networks. We report a third mechanism involving temporal integration of neural activity by a network of astrocytes. Previously, we showed that some types of interneurons can generate long-lasting trains of action potentials (barrage firing) following repeated depolarizing stimuli. Here we show that calcium signaling in an astrocytic network correlates with barrage firing; that active depolarization of astrocyte networks by chemical or optogenetic stimulation enhances; and that chelating internal calcium, inhibiting release from internal stores, or inhibiting GABA transporters or metabotropic glutamate receptors inhibits barrage firing. Thus, networks of astrocytes influence the spatiotemporal dynamics of neural networks by directly integrating neural activity and driving barrages of action potentials in some populations of inhibitory interneurons.

    View Publication Page
    10/18/18 | In toto imaging and reconstruction of post-implantation mouse development at the single-cell level.
    McDole K, Guignard L, Amat F, Berger A, Malandain G, Royer LA, Turaga SC, Branson K, Keller PJ
    Cell. 2018 Oct 10;175(3):859-876. doi: 10.1016/j.cell.2018.09.031

    The mouse embryo has long been central to the study of mammalian development; however, elucidating the cell behaviors governing gastrulation and the formation of tissues and organs remains a fundamental challenge. A major obstacle is the lack of live imaging and image analysis technologies capable of systematically following cellular dynamics across the developing embryo. We developed a light-sheet microscope that adapts itself to the dramatic changes in size, shape, and optical properties of the post-implantation mouse embryo and captures its development from gastrulation to early organogenesis at the cellular level. We furthermore developed a computational framework for reconstructing long-term cell tracks, cell divisions, dynamic fate maps, and maps of tissue morphogenesis across the entire embryo. By jointly analyzing cellular dynamics in multiple embryos registered in space and time, we built a dynamic atlas of post-implantation mouse development that, together with our microscopy and computational methods, is provided as a resource.

    View Publication Page
    Svoboda Lab
    10/17/18 | A cortico-cerebellar loop for motor planning.
    Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N
    Nature. 2018 Oct 17;563:113-6. doi: 10.1038/s41586-018-0633-x

    Persistent and ramping neural activity in the frontal cortex anticipates specific movements. Preparatory activity is distributed across several brain regions, but it is unclear which brain areas are involved and how this activity is mediated by multi-regional interactions. The cerebellum is thought to be primarily involved in the short-timescale control of movement; however, roles for this structure in cognitive processes have also been proposed. In humans, cerebellar damage can cause defects in planning and working memory. Here we show that persistent representation of information in the frontal cortex during motor planning is dependent on the cerebellum. Mice performed a sensory discrimination task in which they used short-term memory to plan a future directional movement. A transient perturbation in the medial deep cerebellar nucleus (fastigial nucleus) disrupted subsequent correct responses without hampering movement execution. Preparatory activity was observed in both the frontal cortex and the cerebellar nuclei, seconds before the onset of movement. The silencing of frontal cortex activity abolished preparatory activity in the cerebellar nuclei, and fastigial activity was necessary to maintain cortical preparatory activity. Fastigial output selectively targeted the behaviourally relevant part of the frontal cortex through the thalamus, thus closing a cortico-cerebellar loop. Our results support the view that persistent neural dynamics during motor planning is maintained by neural circuits that span multiple brain regions, and that cerebellar computations extend beyond online motor control.

    View Publication Page
    10/16/18 | Expanding the optogenetics toolkit by topological inversion of rhodopsins.
    Brown J, Behnam R, Coddington L, Tervo DG, Martin K, Proskurin M, Kuleshova E, Park J, Phillips J, Bergs AC, Gottschalk A, Dudman JT, Karpova AY
    Cell. 2018 Oct 16;175(4):1131-40. doi: 10.1016/j.cell.2018.09.026

    Targeted manipulation of activity in specific populations of neurons is important for investigating the neural circuit basis of behavior. Optogenetic approaches using light-sensitive microbial rhodopsins have permitted manipulations to reach a level of temporal precision that is enabling functional circuit dissection. As demand for more precise perturbations to serve specific experimental goals increases, a palette of opsins with diverse selectivity, kinetics, and spectral properties will be needed. Here, we introduce a novel approach of "topological engineering"-inversion of opsins in the plasma membrane-and demonstrate that it can produce variants with unique functional properties of interest for circuit neuroscience. In one striking example, inversion of a Channelrhodopsin variant converted it from a potent activator into a fast-acting inhibitor that operates as a cation pump. Our findings argue that membrane topology provides a useful orthogonal dimension of protein engineering that immediately permits as much as a doubling of the available toolkit.

    View Publication Page
    10/15/18 | Analysis tools for large connectomes.
    Scheffer LK
    Frontiers in Neural Circuits. 2018;12:85. doi: 10.3389/fncir.2018.00085

    New reconstruction techniques are generating connectomes of unprecedented size. These must be analyzed to generate human comprehensible results. The analyses being used fall into three general categories. The first is interactive tools used during reconstruction, to help guide the effort, look for possible errors, identify potential cell classes, and answer other preliminary questions. The second type of analysis is support for formal documents such as papers and theses. Scientific norms here require that the data be archived and accessible, and the analysis reproducible. In contrast to some other "omic" fields such as genomics, where a few specific analyses dominate usage, connectomics is rapidly evolving and the analyses used are often specific to the connectome being analyzed. These analyses are typically performed in a variety of conventional programming language, such as Matlab, R, Python, or C++, and read the connectomic data either from a file or through database queries, neither of which are standardized. In the short term we see no alternative to the use of specific analyses, so the best that can be done is to publish the analysis code, and the interface by which it reads connectomic data. A similar situation exists for archiving connectome data. Each group independently makes their data available, but there is no standardized format and long-term accessibility is neither enforced nor funded. In the long term, as connectomics becomes more common, a natural evolution would be a central facility for storing and querying connectomic data, playing a role similar to the National Center for Biotechnology Information for genomes. The final form of analysis is the import of connectome data into downstream tools such as neural simulation or machine learning. In this process, there are two main problems that need to be addressed. First, the reconstructed circuits contain huge amounts of detail, which must be intelligently reduced to a form the downstream tools can use. Second, much of the data needed for these downstream operations must be obtained by other methods (such as genetic or optical) and must be merged with the extracted connectome.

    View Publication Page
    10/15/18 | The timing of action determines reward prediction signals in identified midbrain dopamine neurons.
    Coddington LT, Dudman JT
    Nature Neuroscience. 2018 Oct 15;21(11):1563-73. doi: 10.1038/s41593-018-0245-7

    Animals adapt their behavior in response to informative sensory cues using multiple brain circuits. The activity of midbrain dopaminergic neurons is thought to convey a critical teaching signal: reward-prediction error. Although reward-prediction error signals are thought to be essential to learning, little is known about the dynamic changes in the activity of midbrain dopaminergic neurons as animals learn about novel sensory cues and appetitive rewards. Here we describe a large dataset of cell-attached recordings of identified dopaminergic neurons as naive mice learned a novel cue-reward association. During learning midbrain dopaminergic neuron activity results from the summation of sensory cue-related and movement initiation-related response components. These components are both a function of reward expectation yet they are dissociable. Learning produces an increasingly precise coordination of action initiation following sensory cues that results in apparent reward-prediction error correlates. Our data thus provide new insights into the circuit mechanisms that underlie a critical computation in a highly conserved learning circuit.

    View Publication Page
    10/14/18 | Social isolation-induced epigenetic and transcriptional changes in Drosophila dopaminergic neurons.
    Agrawal P, Chung P, Heberlein U, Kent CF
    bioRxiv. 2018 Oct 14:. doi: 10.1101/443226

    Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here we report first use of a modified INTACT method in behavioral epigenetics of Drosophila: a method we call mini-INTACT. Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially-isolated and socially-enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations were predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep. Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics.

    View Publication Page
    10/11/18 | Development of 2-colour and 3D SMLM data analysis methods for fibrous spatial point patterns.
    Peters R, Griffié J, Williamson D, Aaron J, Khuon S, Owen D
    Journal of Physics D: Applied Physics. 2018 Oct 11;52(1):1. doi: 10.1088/1361-6463/aae7ac

    Abstract ingle molecule localisation microscopy (SMLM), experimentally achieved over a decade ago, has become a routinely used analytical tool across the life sciences. Synergistic advances in probe chemistry, optical physics and data analysis has propelled SMLM into the quantitative realm, enabling unprecedented access to the cellular machinery at the nanoscale. In its early years, SMLM primarily served as a platform for impressive rendered images of sub diffraction scale structures, however more recently a shift towards interrogating SMLM point pattern data in a robust mathematical framework has occurred. A prevalent theme in the SMLM field is the need for quantitative analytical methods, to better understand the underlying processes on which SMLM reports and to extract statistically valid biological insights. Whilst some forms of post processing analytics, for example cluster analysis, have been widely studied, others such as fibre analysis remain in their infancy. Here, we review the current state of the art of cluster analysis and fibre analysis and present new methods for their implementation in both 3D SMLM data sets and multi-colour data.

    View Publication Page
    10/11/18 | Thy1 transgenic mice expressing the red fluorescent calcium indicator jRGECO1a for neuronal population imaging in vivo.
    Dana H, Novak O, Guardado-Montesino M, Fransen JW, Hu A, Borghuis BG, Guo C, Kim DS, Svoboda K
    PloS One. 2018;13(10):e0205444. doi: 10.1371/journal.pone.0205444

    Calcium imaging is commonly used to measure the neural activity of large groups of neurons in mice. Genetically encoded calcium indicators (GECIs) can be delivered for this purpose using non-invasive genetic methods. Compared to viral gene transfer, transgenic targeting of GECIs provides stable long-term expression and obviates the need for invasive viral injections. Transgenic mice expressing the green GECI GCaMP6 are already widely used. Here we present the generation and characterization of transgenic mice expressing the sensitive red GECI jRGECO1a, driven by the Thy1 promoter. Four transgenic lines with different expression patterns showed sufficiently high expression for cellular in vivo imaging. We used two-photon microscopy to characterize visual responses of individual neurons in the visual cortex in vivo. The signal-to-noise ratio in transgenic mice was comparable to, or better than, mice transduced with adeno-associated virus. In addition, we show that Thy1-jRGECO1a transgenic mice are useful for transcranial population imaging and functional mapping using widefield fluorescence microscopy. We also demonstrate imaging of visual responses in retinal ganglion cells in vitro. Thy1-jRGECO1a transgenic mice are therefore a useful addition to the toolbox for imaging activity in intact neural networks.

    View Publication Page