Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    05/18/22 | A functionally ordered visual feature map in the Drosophila brain.
    Klapoetke NC, Nern A, Rogers EM, Rubin GM, Reiser MB, Card GM
    Neuron. 2022 May 18;110(10):1700. doi: 10.1016/j.neuron.2022.02.013

    Topographic maps, the systematic spatial ordering of neurons by response tuning, are common across species. In Drosophila, the lobula columnar (LC) neuron types project from the optic lobe to the central brain, where each forms a glomerulus in a distinct position. However, the advantages of this glomerular arrangement are unclear. Here, we examine the functional and spatial relationships of 10 glomeruli using single-neuron calcium imaging. We discover novel detectors for objects smaller than the lens resolution (LC18) and for complex line motion (LC25). We find that glomeruli are spatially clustered by selectivity for looming versus drifting object motion and ordered by size tuning to form a topographic visual feature map. Furthermore, connectome analysis shows that downstream neurons integrate from sparse subsets of possible glomeruli combinations, which are biased for glomeruli encoding similar features. LC neurons are thus an explicit example of distinct feature detectors topographically organized to facilitate downstream circuit integration.

    View Publication Page
    03/14/22 | A population of descending neurons that regulates the flight motor of Drosophila.
    Namiki S, Ros IG, Morrow C, Rowell WJ, Card GM, Korff W, Dickinson MH
    Current Biology. 2022 Mar 14;32(5):1189-1196. doi: 10.1016/j.cub.2022.01.008

    Similar to many insect species, Drosophila melanogaster is capable of maintaining a stable flight trajectory for periods lasting up to several hours. Because aerodynamic torque is roughly proportional to the fifth power of wing length, even small asymmetries in wing size require the maintenance of subtle bilateral differences in flapping motion to maintain a stable path. Flies can even fly straight after losing half of a wing, a feat they accomplish via very large, sustained kinematic changes to both the damaged and intact wings. Thus, the neural network responsible for stable flight must be capable of sustaining fine-scaled control over wing motion across a large dynamic range. In this study, we describe an unusual type of descending neuron (DNg02) that projects directly from visual output regions of the brain to the dorsal flight neuropil of the ventral nerve cord. Unlike many descending neurons, which exist as single bilateral pairs with unique morphology, there is a population of at least 15 DNg02 cell pairs with nearly identical shape. By optogenetically activating different numbers of DNg02 cells, we demonstrate that these neurons regulate wingbeat amplitude over a wide dynamic range via a population code. Using two-photon functional imaging, we show that DNg02 cells are responsive to visual motion during flight in a manner that would make them well suited to continuously regulate bilateral changes in wing kinematics. Collectively, we have identified a critical set of descending neurons that provides the sensitivity and dynamic range required for flight control.

    View Publication Page
    03/11/22 | Context-dependent control of behavior in Drosophila.
    Oram TB, Card GM
    Current Opinion in Neurobiology. 2022 Mar 11;73:102523. doi: 10.1016/j.conb.2022.02.003

    The representation of contextual information peripheral to a salient stimulus is central to an animal's ability to correctly interpret and flexibly respond to that stimulus. While the computations and circuits underlying the context-dependent modulation of stimulus-response pairings have typically been studied in vertebrates, the genetic tractability, numeric simplification, and well-characterized connectivity patterns of the Drosophila melanogaster brain have facilitated circuit-level insights into contextual processing. Recent studies in flies reveal the neuronal mechanisms that create flexible context-dependent behavioral responses to sensory events in conditions of predation threat, feeding regulation, and social interaction.

    View Publication Page