Filter
Associated Lab
- Ahrens Lab (4) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (3) Apply Betzig Lab filter
- Beyene Lab (1) Apply Beyene Lab filter
- Card Lab (3) Apply Card Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Darshan Lab (2) Apply Darshan Lab filter
- Dickson Lab (2) Apply Dickson Lab filter
- Dudman Lab (3) Apply Dudman Lab filter
- Espinosa Medina Lab (3) Apply Espinosa Medina Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Fitzgerald Lab (3) Apply Fitzgerald Lab filter
- Funke Lab (5) Apply Funke Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Hermundstad Lab (6) Apply Hermundstad Lab filter
- Hess Lab (7) Apply Hess Lab filter
- Jayaraman Lab (3) Apply Jayaraman Lab filter
- Keleman Lab (1) Apply Keleman Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Lavis Lab (13) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Leonardo Lab (1) Apply Leonardo Lab filter
- Lippincott-Schwartz Lab (7) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (5) Apply Liu (Zhe) Lab filter
- Looger Lab (7) Apply Looger Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Pachitariu Lab (4) Apply Pachitariu Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (1) Apply Podgorski Lab filter
- Reiser Lab (3) Apply Reiser Lab filter
- Romani Lab (3) Apply Romani Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Saalfeld Lab (6) Apply Saalfeld Lab filter
- Scheffer Lab (1) Apply Scheffer Lab filter
- Singer Lab (1) Apply Singer Lab filter
- Spruston Lab (2) Apply Spruston Lab filter
- Stern Lab (8) Apply Stern Lab filter
- Sternson Lab (3) Apply Sternson Lab filter
- Stringer Lab (5) Apply Stringer Lab filter
- Svoboda Lab (6) Apply Svoboda Lab filter
- Tebo Lab (1) Apply Tebo Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Turaga Lab (2) Apply Turaga Lab filter
- Turner Lab (2) Apply Turner Lab filter
- Vale Lab (2) Apply Vale Lab filter
Associated Project Team
- COSEM (1) Apply COSEM filter
- Fly Descending Interneuron (1) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (2) Apply Fly Functional Connectome filter
- FlyLight (4) Apply FlyLight filter
- GENIE (1) Apply GENIE filter
- Tool Translation Team (T3) (2) Apply Tool Translation Team (T3) filter
Associated Support Team
- Anatomy and Histology (3) Apply Anatomy and Histology filter
- Cryo-Electron Microscopy (4) Apply Cryo-Electron Microscopy filter
- Integrative Imaging (3) Apply Integrative Imaging filter
- Invertebrate Shared Resource (6) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (3) Apply Janelia Experimental Technology filter
- Molecular Genomics (5) Apply Molecular Genomics filter
- Primary & iPS Cell Culture (2) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (5) Apply Project Technical Resources filter
- Quantitative Genomics (2) Apply Quantitative Genomics filter
- Scientific Computing Software (4) Apply Scientific Computing Software filter
- Scientific Computing Systems (1) Apply Scientific Computing Systems filter
- Viral Tools (6) Apply Viral Tools filter
- Vivarium (1) Apply Vivarium filter
Publication Date
- December 2022 (12) Apply December 2022 filter
- November 2022 (17) Apply November 2022 filter
- October 2022 (12) Apply October 2022 filter
- September 2022 (14) Apply September 2022 filter
- August 2022 (13) Apply August 2022 filter
- July 2022 (17) Apply July 2022 filter
- June 2022 (10) Apply June 2022 filter
- May 2022 (22) Apply May 2022 filter
- April 2022 (8) Apply April 2022 filter
- March 2022 (14) Apply March 2022 filter
- February 2022 (16) Apply February 2022 filter
- January 2022 (12) Apply January 2022 filter
- Remove 2022 filter 2022
167 Janelia Publications
Showing 121-130 of 167 resultsSignificanceInteractions between the cell nucleus and cytoskeleton regulate cell mechanics and are facilitated by the interplay between the nuclear lamina and linker of nucleoskeleton and cytoskeleton (LINC) complexes. To date, the specific contribution of the four lamin isoforms to nucleocytoskeletal connectivity and whole-cell mechanics remains unknown. We discover that A- and B-type lamins distinctively interact with LINC complexes that bind F-actin and vimentin filaments to differentially modulate cortical stiffness, cytoplasmic stiffness, and contractility of mouse embryonic fibroblasts (MEFs). We propose and experimentally verify an integrated lamin-LINC complex-cytoskeleton model that explains cellular mechanical phenotypes in lamin-deficient MEFs. Our findings uncover potential mechanisms for cellular defects in human laminopathies and many cancers associated with mutations or modifications in lamin isoforms.
Animal wings deform during flight in ways that can enhance lift, facilitate flight control, and mitigate damage. Monitoring the structural and aerodynamic state of the wing is challenging because deformations are passive, and the flow fields are unsteady; it requires distributed mechanosensors that respond to local airflow and strain on the wing. Without a complete map of the sensor arrays, it is impossible to model control strategies underpinned by them. Here, we present the first systematic characterization of mechanosensors on the dragonfly's wings: morphology, distribution, and wiring. By combining a cross-species survey of sensor distribution with quantitative neuroanatomy and a high-fidelity finite element analysis, we show that the mechanosensors are well placed to perceive features of the wing dynamics relevant to flight. This work describes the wing sensory apparatus in its entirety and advances our understanding of the sensorimotor loop that facilitates exquisite flight control in animals with highly deformable wings.
Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.
Motor systems must continuously adapt their output to maintain a desired trajectory. While the spinal circuits underlying rhythmic locomotion are well described, little is known about how the network modulates its output strength. A major challenge has been the difficulty of recording from spinal neurons during behavior. Here, we use voltage imaging to map the membrane potential of large populations of glutamatergic neurons throughout the spinal cord of the larval zebrafish during fictive swimming in a virtual environment. We characterized a previously undescribed subpopulation of tonic-spiking ventral V3 neurons whose spike rate correlated with swimming strength and bout length. Optogenetic activation of V3 neurons led to stronger swimming and longer bouts but did not affect tail beat frequency. Genetic ablation of V3 neurons led to reduced locomotor adaptation. The power of voltage imaging allowed us to identify V3 neurons as a critical driver of locomotor adaptation in zebrafish.
Manifold attractors are a key framework for understanding how continuous variables, such as position or head direction, are encoded in the brain. In this framework, the variable is represented along a continuum of persistent neuronal states which forms a manifold attactor. Neural networks with symmetric synaptic connectivity that can implement manifold attractors have become the dominant model in this framework. In addition to a symmetric connectome, these networks imply homogeneity of individual-neuron tuning curves and symmetry of the representational space; these features are largely inconsistent with neurobiological data. Here, we developed a theory for computations based on manifold attractors in trained neural networks and show how these manifolds can cope with diverse neuronal responses, imperfections in the geometry of the manifold and a high level of synaptic heterogeneity. In such heterogeneous trained networks, a continuous representational space emerges from a small set of stimuli used for training. Furthermore, we find that the network response to external inputs depends on the geometry of the representation and on the level of synaptic heterogeneity in an analytically tractable and interpretable way. Finally, we show that a too complex geometry of the neuronal representation impairs the attractiveness of the manifold and may lead to its destabilization. Our framework reveals that continuous features can be represented in the recurrent dynamics of heterogeneous networks without assuming unrealistic symmetry. It suggests that the representational space of putative manifold attractors in the brain dictates the dynamics in their vicinity.
Daily temporal organisation offers a fitness advantage and is determined by an interplay between environmental rhythms and circadian clocks. While light:dark cycles robustly synchronise circadian clocks, it is not clear how animals experiencing only weak environmental cues deal with this problem. Like humans, Drosophila originate in sub-Saharan Africa and spread North up to the polar circle, experiencing long summer days or even constant light (LL). LL disrupts clock function, due to constant activation of CRYPTOCHROME, which induces degradation of the clock protein TIMELESS (TIM), but temperature cycles are able to overcome these deleterious effects of LL. We show here that for this to occur a recently evolved natural timeless allele (ls-tim) is required, encoding the less light-sensitive L-TIM in addition to S-TIM, the only form encoded by the ancient s-tim allele. We show that only ls-tim flies can synchronise their behaviour to semi-natural conditions typical for Northern European summers, suggesting that this functional gain is driving the Northward ls-tim spread.
The availability of both anatomical connectivity and brain-wide neural activity measurements in C. elegans make the worm a promising system for learning detailed, mechanistic models of an entire nervous system in a data-driven way. However, one faces several challenges when constructing such a model. We often do not have direct experimental access to important modeling details such as single-neuron dynamics and the signs and strengths of the synaptic connectivity. Further, neural activity can only be measured in a subset of neurons, often indirectly via calcium imaging, and significant trial-to-trial variability has been observed. To address these challenges, we introduce a connectome-constrained latent variable model (CC-LVM) of the unobserved voltage dynamics of the entire C. elegans nervous system and the observed calcium signals. We used the framework of variational autoencoders to fit parameters of the mechanistic simulation constituting the generative model of the LVM to calcium imaging observations. A variational approximate posterior distribution over latent voltage traces for all neurons is efficiently inferred using an inference network, and constrained by a prior distribution given by the biophysical simulation of neural dynamics. We applied this model to an experimental whole-brain dataset, and found that connectomic constraints enable our LVM to predict the activity of neurons whose activity were withheld significantly better than models unconstrained by a connectome. We explored models with different degrees of biophysical detail, and found that models with realistic conductance-based synapses provide markedly better predictions than current-based synapses for this system.
The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.
Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A), and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later-onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, while its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early-onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, based on reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early-onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.
Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.