Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

44 Janelia Publications

Showing 1-10 of 44 results
Your Criteria:
    Cardona Lab
    08/27/21 | Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis.
    Hernandez-Nunez L, Chen A, Budelli G, Berck ME, Richter V, Rist A, Thum AS, Cardona A, Klein M, Garrity P, Samuel AD
    Science Advances. 2021 Aug 27;7(35):. doi: 10.1126/sciadv.abg6707

    Body temperature homeostasis is essential and reliant upon the integration of outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these outputs are not understood. Here, we discover a set of warming cells (WCs) and show that the outputs of these WCs combine with previously described cooling cells (CCs) in a cross-inhibition computation to drive thermal homeostasis in larval WCs and CCs detect temperature changes using overlapping combinations of ionotropic receptors: Ir68a, Ir93a, and Ir25a for WCs and Ir21a, Ir93a, and Ir25a for CCs. WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling, and CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Ambient temperature-dependent regulation of the strength of WC- and CC-mediated cross-inhibition keeps larvae near their homeostatic set point. Using neurophysiology, quantitative behavioral analysis, and connectomics, we demonstrate how flexible integration between warming and cooling pathways can orchestrate homeostatic thermoregulation.

    View Publication Page
    Truman LabCardona Lab
    06/04/21 | Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila.
    Hückesfeld S, Schlegel P, Miroschnikow A, Schoofs A, Zinke I, Haubrich AN, Schneider-Mizell CM, Truman JW, Fetter RD, Cardona A, Pankratz MJ
    eLife. 2021 Jun 04;10:. doi: 10.7554/eLife.65745

    Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs.

    View Publication Page
    Cardona Lab
    05/19/21 | Regulation of coordinated muscular relaxation in Drosophila larvae by a pattern-regulating intersegmental circuit.
    Hiramoto A, Jonaitis J, Niki S, Kohsaka H, Fetter RD, Cardona A, Pulver SR, Nose A
    Nature Communications. 2021 May 19;12(1):2943. doi: 10.1038/s41467-021-23273-y

    Typical patterned movements in animals are achieved through combinations of contraction and delayed relaxation of groups of muscles. However, how intersegmentally coordinated patterns of muscular relaxation are regulated by the neural circuits remains poorly understood. Here, we identify Canon, a class of higher-order premotor interneurons, that regulates muscular relaxation during backward locomotion of Drosophila larvae. Canon neurons are cholinergic interneurons present in each abdominal neuromere and show wave-like activity during fictive backward locomotion. Optogenetic activation of Canon neurons induces relaxation of body wall muscles, whereas inhibition of these neurons disrupts timely muscle relaxation. Canon neurons provide excitatory outputs to inhibitory premotor interneurons. Canon neurons also connect with each other to form an intersegmental circuit and regulate their own wave-like activities. Thus, our results demonstrate how coordinated muscle relaxation can be realized by an intersegmental circuit that regulates its own patterned activity and sequentially terminates motor activities along the anterior-posterior axis.

    View Publication Page
    Cardona LabZlatic Lab
    01/06/21 | Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila.
    Valdes-Aleman J, Fetter RD, Sales EC, Heckman EL, Venkatasubramanian L, Doe CQ, Landgraf M, Cardona A, Zlatic M
    Neuron. 2021 Jan 06;109(1):105-22. doi: 10.1016/j.neuron.2020.10.004

    The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.

    View Publication Page
    Cardona Lab
    01/01/21 | Internal state configures olfactory behavior and early sensory processing in larvae.
    Vogt K, Zimmerman DM, Schlichting M, Hernandez-Nunez L, Qin S, Malacon K, Rosbash M, Pehlevan C, Cardona A, Samuel AD
    Science Advances. 2021 Jan 01;7(1):. doi: 10.1126/sciadv.abd6900

    Animals exhibit different behavioral responses to the same sensory cue depending on their internal state at a given moment. How and where in the brain are sensory inputs combined with state information to select an appropriate behavior? Here, we investigate how food deprivation affects olfactory behavior in larvae. We find that certain odors repel well-fed animals but attract food-deprived animals and that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Hunger differentially modulates two output pathways required for opposing behavioral responses. Upon food deprivation, attraction-mediating uniglomerular projection neurons show elevated odor-evoked activity, whereas an aversion-mediating multiglomerular projection neuron receives odor-evoked inhibition. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.

    View Publication Page
    Cardona Lab
    06/08/20 | The corazonin-PTTH neuronal axis controls systemic body growth by regulating basal ecdysteroid biosynthesis in Drosophila melanogaster.
    Imura E, Shimada-Niwa Y, Nishimura T, Hückesfeld S, Schlegel P, Ohhara Y, Kondo S, Tanimoto H, Cardona A, Pankratz MJ, Niwa R
    Current Biology. 2020 Jun 8;30(11):2156-65. doi: 10.1016/j.cub.2020.03.050

    Steroid hormones play key roles in development, growth, and reproduction in various animal phyla [1]. The insect steroid hormone, ecdysteroid, coordinates growth and maturation, represented by molting and metamorphosis [2]. In Drosophila melanogaster, the prothoracicotropic hormone (PTTH)-producing neurons stimulate peak levels of ecdysteroid biosynthesis for maturation [3]. Additionally, recent studies on PTTH signaling indicated that basal levels of ecdysteroid negatively affect systemic growth prior to maturation [4-8]. However, it remains unclear how PTTH signaling is regulated for basal ecdysteroid biosynthesis. Here, we report that Corazonin (Crz)-producing neurons regulate basal ecdysteroid biosynthesis by affecting PTTH neurons. Crz belongs to gonadotropin-releasing hormone (GnRH) superfamily, implying an analogous role in growth and maturation [9]. Inhibition of Crz neuronal activity increased pupal size, whereas it hardly affected pupariation timing. This phenotype resulted from enhanced growth rate and a delay in ecdysteroid elevation during the mid-third instar larval (L3) stage. Interestingly, Crz receptor (CrzR) expression in PTTH neurons was higher during the mid- than the late-L3 stage. Silencing of CrzR in PTTH neurons increased pupal size, phenocopying the inhibition of Crz neuronal activity. When Crz neurons were optogenetically activated, a strong calcium response was observed in PTTH neurons during the mid-L3, but not the late-L3, stage. Furthermore, we found that octopamine neurons contact Crz neurons in the subesophageal zone (SEZ), transmitting signals for systemic growth. Together, our results suggest that the Crz-PTTH neuronal axis modulates ecdysteroid biosynthesis in response to octopamine, uncovering a regulatory neuroendocrine system in the developmental transition from growth to maturation.

    View Publication Page
    03/23/20 | Recurrent architecture for adaptive regulation of learning in the insect brain.
    Eschbach C, Fushiki A, Winding M, Schneider-Mizell CM, Shao M, Arruda R, Eichler K, Valdes-Aleman J, Ohyama T, Thum AS, Gerber B, Fetter RD, Truman JW, Litwin-Kumar A, Cardona A, Zlatic M, Cardona A, Zlatic M
    Nature Neuroscience. 2020 Mar 23;23(4):544-55. doi: 10.1038/s41593-020-0607-9

    Dopaminergic neurons (DANs) drive learning across the animal kingdom, but the upstream circuits that regulate their activity and thereby learning remain poorly understood. We provide a synaptic-resolution connectome of the circuitry upstream of all DANs in a learning center, the mushroom body of Drosophila larva. We discover afferent sensory pathways and a large population of neurons that provide feedback from mushroom body output neurons and link distinct memory systems (aversive and appetitive). We combine this with functional studies of DANs and their presynaptic partners and with comprehensive circuit modeling. We find that DANs compare convergent feedback from aversive and appetitive systems, which enables the computation of integrated predictions that may improve future learning. Computational modeling reveals that the discovered feedback motifs increase model flexibility and performance on learning tasks. Our study provides the most detailed view to date of biological circuit motifs that support associative learning.

    View Publication Page
    02/14/20 | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila.
    Masson J, Laurent F, Cardona A, Barre C, Skatchkovsky N, Zlatic M, Jovanic T
    PLoS Genetics. 2020 Feb 14;16(2):e1008589. doi: 10.1371/journal.pgen.1008589

    Nervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.

    View Publication Page
    09/01/19 | BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples.
    Hörl D, Rojas Rusak F, Preusser F, Tillberg P, Randel N, Chhetri RK, Cardona A, Keller PJ, Harz H, Leonhardt H, Treier M, Preibisch S
    Nature Methods. 2019 Sep;16(9):870-74. doi: 10.1038/s41592-019-0501-0

    Light-sheet imaging of cleared and expanded samples creates terabyte-sized datasets that consist of many unaligned three-dimensional image tiles, which must be reconstructed before analysis. We developed the BigStitcher software to address this challenge. BigStitcher enables interactive visualization, fast and precise alignment, spatially resolved quality estimation, real-time fusion and deconvolution of dual-illumination, multitile, multiview datasets. The software also compensates for optical effects, thereby improving accuracy and enabling subsequent biological analysis.

    View Publication Page
    Truman LabCardona Lab
    06/14/19 | Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae.
    Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, Nose A
    Nature Communications. 2019 Jun 14;10(1):2654. doi: 10.1038/s41467-019-10695-y

    Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system.

    View Publication Page