Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

84 Janelia Publications

Showing 11-20 of 84 results
Your Criteria:
    04/25/23 | Simultaneous photoactivation and high-speed structural tracking reveal diffusion-dominated motion in the endoplasmic reticulum
    Matteo Dora , Christopher J. Obara , Tim Abel , Jennifer Lippincott-Schwarz , David Holcman
    bioRxiv. 2023 Apr 25:. doi: 10.1101/2023.04.23.537908

    The endoplasmic reticulum (ER) is a structurally complex, membrane-enclosed compartment that stretches from the nuclear envelope to the extreme periphery of eukaryotic cells. The organelle is crucial for numerous distinct cellular processes, but how these processes are spatially regulated within the structure is unclear. Traditional imaging-based approaches to understanding protein dynamics within the organelle are limited by the convoluted structure and rapid movement of molecular components. Here, we introduce a combinatorial imaging and machine learning-assisted image analysis approach to track the motion of photoactivated proteins within the ER of live cells. We find that simultaneous knowledge of the underlying ER structure is required to accurately analyze fluorescently-tagged protein redistribution, and after appropriate structural calibration we see all proteins assayed show signatures of Brownian diffusion-dominated motion over micron spatial scales. Remarkably, we find that in some cells the ER structure can be explored in a highly asymmetric manner, likely as a result of uneven connectivity within the organelle. This remains true independently of the size, topology, or folding state of the fluorescently-tagged molecules, suggesting a potential role for ER connectivity in driving spatially regulated biology in eukaryotes.

    View Publication Page
    03/15/23 | Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome
    Kailash Venkatraman , Christopher T Lee , Guadalupe C. Garcia , Arijit Mahapatra , Guy Perkins , Keun-Young Kim , Hilda Amalia Pasolli , Sebastien Phan , Jennifer Lippincott-Schwartz , Mark Ellisman , Padmini Rangamani , Itay Budin
    bioRxiv. 2023 Mar 15:. doi: 10.1101/2023.03.13.532310

    The inner mitochondrial membrane (IMM) is the site of bulk ATP generation in cells and has a broadly conserved lipid composition enriched in unsaturated phospholipids and cardiolipin (CL). While proteins that shape the IMM and its characteristic cristae membranes (CM) have been defined, specific mechanisms by which mitochondrial lipids dictate its structure and function have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions shape CM morphology and ATP generation. When modulating fatty acid unsaturation in engineered yeast strains, we observed that loss of di-unsaturated phospholipids (PLs) led to a breakpoint in IMM topology and respiratory capacity. We found that PL unsaturation modulates the organization of ATP synthases that shape cristae ridges. Based on molecular modeling of mitochondrial-specific membrane adaptations, we hypothesized that conical lipids like CL buffer against the effects of saturation on the IMM. In cells, we discovered that loss of CL collapses the IMM at intermediate levels of PL saturation, an effect that is independent of ATP synthase oligomerization. To explain this interaction, we employed a continuum modeling approach, finding that lipid and protein-mediated curvatures are predicted to act in concert to form curved membranes in the IMM. The model highlighted a snapthrough instability in cristae tubule formation, which could drive IMM collapse upon small changes in composition. The interaction between CL and di-unsaturated PLs suggests that growth conditions that alter the fatty acid pool, such as oxygen availability, could define CL function. While loss of CL only has a minimal phenotype under standard laboratory conditions, we show that its synthesis is essential under microaerobic conditions that better mimic natural yeast fermentation. Lipid and protein-mediated mechanisms of curvature generation can thus act together to support mitochondrial architecture under changing environments.

    View Publication Page
    03/01/23 | Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes.
    Qiao C, Li D, Liu Y, Zhang S, Liu K, Liu C, Guo Y, Jiang T, Fang C, Li N, Zeng Y, He K, Zhu X, Lippincott-Schwartz J, Dai Q, Li D
    Nature Biotechnology. 2023 Mar 01;41(3):367-77. doi: 10.1038/s41587-022-01471-3

    The goal when imaging bioprocesses with optical microscopy is to acquire the most spatiotemporal information with the least invasiveness. Deep neural networks have substantially improved optical microscopy, including image super-resolution and restoration, but still have substantial potential for artifacts. In this study, we developed rationalized deep learning (rDL) for structured illumination microscopy and lattice light sheet microscopy (LLSM) by incorporating prior knowledge of illumination patterns and, thereby, rationally guiding the network to denoise raw images. Here we demonstrate that rDL structured illumination microscopy eliminates spectral bias-induced resolution degradation and reduces model uncertainty by five-fold, improving the super-resolution information by more than ten-fold over other computational approaches. Moreover, rDL applied to LLSM enables self-supervised training by using the spatial or temporal continuity of noisy data itself, yielding results similar to those of supervised methods. We demonstrate the utility of rDL by imaging the rapid kinetics of motile cilia, nucleolar protein condensation during light-sensitive mitosis and long-term interactions between membranous and membrane-less organelles.

    View Publication Page
    02/20/23 | Phase separation of Hippo signalling complexes.
    Bonello TT, Cai D, Fletcher GC, Wiengartner K, Pengilly V, Lange KS, Liu Z, Lippincott-Schwartz J, Kavran JM, Thompson BJ
    EMBO Journal. 2023 Feb 20;42(6):e112863. doi: 10.15252/embj.2022112863

    The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.

    View Publication Page
    11/29/22 | Oligodendrocyte precursor cells ingest axons in the mouse neocortex.
    Buchanan J, Elabbady L, Collman F, Jorstad NL, Bakken TE, Ott C, Glatzer J, Bleckert AA, Bodor AL, Brittain D, Bumbarger DJ, Mahalingam G, Seshamani S, Schneider-Mizell C, Takeno MM, Torres R, Yin W, Hodge RD, Castro M, Dorkenwald S, Ih D, Jordan CS, Kemnitz N, Lee K, Lu R, Macrina T, Mu S, Popovych S, Silversmith WM, Tartavull I, Turner NL, Wilson AM, Wong W, Wu J, Zlateski A, Zung J, Lippincott-Schwartz J, Lein ES, Seung HS, Bergles DE, Reid RC, da Costa NM
    Proceedings of the National Academies of Science of the U.S.A.. 2022 Nov 29;119(48):e2202580119. doi: 10.1073/pnas.2202580119

    Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.

    View Publication Page
    09/19/22 | Structural Diversity within the Endoplasmic Reticulum-From the Microscale to the Nanoscale.
    Obara CJ, Moore AS, Lippincott-Schwartz J
    Cold Spring Harbor Perspectives in Biology. 2022 Sep 19:. doi: 10.1101/cshperspect.a041259

    The endoplasmic reticulum (ER) is a continuous, highly dynamic membrane compartment that is crucial for numerous basic cellular functions. The ER stretches from the nuclear envelope to the outer periphery of all living eukaryotic cells. This ubiquitous organelle shows remarkable structural complexity, adopting a range of shapes, curvatures, and length scales. Canonically, the ER is thought to be composed of two simple membrane elements: sheets and tubules. However, recent advances in superresolution light microscopy and three-dimensional electron microscopy have revealed an astounding diversity of nanoscale ER structures, greatly expanding our view of ER organization. In this review, we describe these diverse ER structures, focusing on what is known of their regulation and associated functions in mammalian cells.

    View Publication Page
    09/03/22 | Motion of single molecular tethers reveals dynamic subdomains at ER-mitochondria contact sites
    Christopher J. Obara , Jonathon Nixon-Abell , Andrew S. Moore , Federica Riccio , David P. Hoffman , Gleb Shtengel , C. Shan Xu , Kathy Schaefer , H. Amalia Pasolli , Jean-Baptiste Masson , Harald F. Hess , Christopher P. Calderon , Craig Blackstone , Jennifer Lippincott-Schwartz
    bioRxiv. 2022 Sep 03:. doi: 10.1101/2022.09.03.505525

    To coordinate cellular physiology, eukaryotic cells rely on the inter-organelle transfer of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites3. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle4,5. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation6,7, a clear understanding of their nanoscale structure and regulation is still lacking. Here, we combine 3D electron microscopy with high-speed molecular tracking of a model organelle tether, VAPB, to map the structure and diffusion landscape of ERMCSs. From EM reconstructions, we identified subdomains within the contact site where ER membranes dramatically deform to match local mitochondrial curvature. In parallel live cell experiments, we observed that the VAPB tethers that mediate this interface were not immobile, but rather highly dynamic, entering and leaving the site in seconds. These subdomains enlarged during nutrient stress, indicating ERMCSs can readily remodel under different physiological conditions. An ALS-associated mutation in VAPB altered the normal fluidity of contact sites, likely perturbing effective communication across the contact site and preventing remodeling. These results establish high speed single molecule imaging as a new tool for mapping the structure of contact site interfaces and suggest that the diffusion landscape of VAPB is a crucial component of ERMCS homeostasis.

    View Publication Page
    06/12/22 | Super-Resolution Imaging of Fas/CD95 Reorganization Induced by Membrane-Bound Fas Ligand Reveals Nanoscale Clustering Upstream of FADD Recruitment.
    Frazzette N, Cruz AC, Wu X, Hammer JA, Lippincott-Schwartz J, Siegel RM, Sengupta P
    Cells. 2022 Jun 12;11(12):. doi: 10.3390/cells11121908

    Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas-Fas and Fas-FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.

    View Publication Page
    06/02/22 | Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress.
    Liu X, Viswanadhapalli S, Kumar S, Lee T, Moore A, Ma S, Chen L, Hsieh M, Li M, Sareddy GR, Parra K, Blatt EB, Reese TC, Zhao Y, Chang A, Yan H, Xu Z, Pratap UP, Liu Z, Roggero CM, Tan Z, Weintraub ST, Peng Y, Tekmal RR, Arteaga CL, Lippincott-Schwartz J, Vadlamudi RK, Ahn J, Raj GV
    Nature Cancer. 2022 Jun 02;3(7):866-884. doi: 10.1038/s43018-022-00389-8

    Triple-negative breast cancer (TNBC) has a poor clinical outcome, due to a lack of actionable therapeutic targets. Herein we define lysosomal acid lipase A (LIPA) as a viable molecular target in TNBC and identify a stereospecific small molecule (ERX-41) that binds LIPA. ERX-41 induces endoplasmic reticulum (ER) stress resulting in cell death, and this effect is on target as evidenced by specific LIPA mutations providing resistance. Importantly, we demonstrate that ERX-41 activity is independent of LIPA lipase function but dependent on its ER localization. Mechanistically, ERX-41 binding of LIPA decreases expression of multiple ER-resident proteins involved in protein folding. This targeted vulnerability has a large therapeutic window, with no adverse effects either on normal mammary epithelial cells or in mice. Our study implicates a targeted strategy for solid tumors, including breast, brain, pancreatic and ovarian, whereby small, orally bioavailable molecules targeting LIPA block protein folding, induce ER stress and result in tumor cell death.

    View Publication Page
    02/01/22 | Organization of translating secretome mRNAS on endoplasmic reticulum
    Choi H, Liao Y, Yoon YJ, Grimm J, Lavis LD, Singer RH, Lippincott-Schwartz J
    Biophysical Journal. 2022 Feb 01;121(3):33a. doi: 10.1016/j.bpj.2021.11.2550

    The endoplasmic reticulum (ER) has a complex morphology comprised of stacked sheets, tubules, and three-way junctions, which together function as a platform for protein synthesis of membrane and secretory proteins. Specific ER subdomains are thought to be spatially organized to enable protein synthesis activity, but precisely where these domains are localized is unclear, especially relative to the plethora of organelle interactions taking place on the ER. Here, we use single-molecule tracking of ribosomes and mRNA in combination with simultaneous imaging of ER to assess the sites of membrane protein synthesis on the ER. We found that ribosomes were widely distributed throughout different ER morphologies, but the synthesis of membrane proteins (including Type I, II, and multi-spanning) and an ER luminal protein (Calreticulin) occurred primarily at three-way junctions. Lunapark played a key role in stabilizing transmembrane protein mRNA at three-way junctions. We additionally found that translating mRNAs coding for transmembrane proteins are in the vicinity of lysosomes and translate through a cap-independent but eIF2-dependent mechanism. These results support the idea that discrete ER subdomains co-exist with lysosomes to support specific types of protein synthesis activities, with ER-lysosome interactions playing an important role in the translation of secretome mRNAs.

    View Publication Page