Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

13 Janelia Publications

Showing 1-10 of 13 results
Your Criteria:
    03/15/24 | NeuronBridge: an intuitive web application for neuronal morphology search across large data sets
    Jody Clements , Cristian Goina , Philip M. Hubbard , Takashi Kawase , Donald J. Olbris , Hideo Otsuna , Robert Svirskas , Konrad Rokicki
    BMC Bioinformatics. 2024-03-15;25:114. doi: 10.1186/s12859-024-05732-7

    Background

    Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. To exploit this knowledge base, researchers relate a connectome’s structure to neuronal function, often by studying individual neuron cell types. Vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM), enabling the targeting of neurons for experimentation. However, creating a fly line for driving gene expression within a single neuron found in an EM connectome remains a challenge, as it typically requires identifying a pair of driver lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities.

    Results

    Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large data sets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly graphical user interface (GUI), extensible data model, serverless cloud architecture, and massively parallel image search engine.

    Conclusions

    NeuronBridge fills a critical gap in the Drosophila research workflow and is used by hundreds of neuroscience researchers around the world. We offer our software code, open APIs, and processed data sets for integration and reuse, and provide the application as a service at http://neuronbridge.janelia.org.

    View Publication Page
    09/07/20 | A connectome and analysis of the adult Drosophila central brain.
    Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GS, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM
    Elife. 2020 Sep 07;9:. doi: 10.7554/eLife.57443

    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly . Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.

    View Publication Page
    01/09/19 | Comparisons between the ON- and OFF-edge motion pathways in the brain.
    Shinomiya K, Huang G, Lu Z, Parag T, Xu CS, Aniceto R, Ansari N, Cheatham N, Lauchie S, Neace E, Ogundeyi O, Ordish C, Peel D, Shinomiya A, Smith C, Takemura S, Talebi I, Rivlin PK, Nern A, Scheffer LK, Plaza SM, Meinertzhagen IA
    eLife. 2019 Jan 09;8:. doi: 10.7554/eLife.40025

    Understanding the circuit mechanisms behind motion detection is a long-standing question in visual neuroscience. In , recent synapse-level connectomes in the optic lobe, particularly in ON-pathway (T4) receptive-field circuits, in concert with physiological studies, suggest an increasingly intricate motion model compared with the ubiquitous Hassenstein-Reichardt model, while our knowledge of OFF-pathway (T5) has been incomplete. Here we present a conclusive and comprehensive connectome that for the first time integrates detailed connectivity information for inputs to both T4 and T5 pathways in a single EM dataset covering the entire optic lobe. With novel reconstruction methods using automated synapse prediction suited to such a large connectome, we successfully corroborate previous findings in the T4 pathway and comprehensively identify inputs and receptive fields for T5. While the two pathways are likely evolutionarily linked and indeed exhibit many similarities, we uncover interesting differences and interactions that may underlie their distinct functional properties.

    View Publication Page
    11/13/18 | NeuTu: Software for Collaborative, Large-Scale, Segmentation-Based Connectome Reconstruction.
    Zhao T, Olbris DJ, Yu Y, Plaza SM
    Frontiers in Neural Circuits. 2018;12:101. doi: 10.3389/fncir.2018.00101

    Reconstructing a connectome from an EM dataset often requires a large effort of proofreading automatically generated segmentations. While many tools exist to enable tracing or proofreading, recent advances in EM imaging and segmentation quality suggest new strategies and pose unique challenges for tool design to accelerate proofreading. Namely, we now have access to very large multi-TB EM datasets where (1) many segments are largely correct, (2) segments can be very large (several GigaVoxels), and where (3) several proofreaders and scientists are expected to collaborate simultaneously. In this paper, we introduce NeuTu as a solution to efficiently proofread large, high-quality segmentation in a collaborative setting. NeuTu is a client program of our high-performance, scalable image database called DVID so that it can easily be scaled up. Besides common features of typical proofreading software, NeuTu tames unprecedentedly large data with its distinguishing functions, including: (1) low-latency 3D visualization of large mutable segmentations; (2) interactive splitting of very large false merges with highly optimized semi-automatic segmentation; (3) intuitive user operations for investigating or marking interesting points in 3D visualization; (4) visualizing proofreading history of a segmentation; and (5) real-time collaborative proofreading with lock-based concurrency control. These unique features have allowed us to manage the workflow of proofreading a large dataset smoothly without dividing them into subsets as in other segmentation-based tools. Most importantly, NeuTu has enabled some of the largest connectome reconstructions as well as interesting discoveries in the fly brain.

    View Publication Page
    07/18/17 | A connectome of a learning and memory center in the adult Drosophila brain.
    Takemura S, Aso Y, Hige T, Wong AM, Lu Z, Xu CS, Rivlin PK, Hess HF, Zhao T, Parag T, Berg S, Huang G, Katz WT, Olbris DJ, Plaza SM, Umayam LA, Aniceto R, Chang L, Lauchie S, et al
    eLife. 2017 Jul 18;6:e26975. doi: 10.7554/eLife.26975

    Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8-nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only six percent of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall.

    View Publication Page
    01/31/17 | Multicut brings automated neurite segmentation closer to human performance.
    Beier T, Pape C, Rahaman N, Prange T, Berg S, Bock DD, Cardona A, Knott GW, Plaza SM, Scheffer LK, Koethe U, Kreshuk A, Hamprecht FA
    Nature Methods. 2017 Jan 31;14(2):101-102. doi: 10.1038/nmeth.4151
    06/04/16 | Rapid and semi-automated extraction of neuronal cell bodies and nuclei from electron microscopy image stacks.
    Holcomb PS, Morehead M, Doretto G, Chen P, Berg S, Plaza S, Spirou G
    Methods in molecular biology (Clifton, N.J.). 2016;1427:277-90. doi: 10.1007/978-1-4939-3615-1_16

    Connectomics-the study of how neurons wire together in the brain-is at the forefront of modern neuroscience research. However, many connectomics studies are limited by the time and precision needed to correctly segment large volumes of electron microscopy (EM) image data. We present here a semi-automated segmentation pipeline using freely available software that can significantly decrease segmentation time for extracting both nuclei and cell bodies from EM image volumes.

    View Publication Page
    11/03/15 | Synaptic circuits and their variations within different columns in the visual system of Drosophila.
    Takemura S, Xu CS, Lu Z, Rivlin PK, Parag T, Olbris DJ, Plaza S, Zhao T, Katz WT, Umayam L, Weaver C, Hess HF, Horne JA, Nunez-Iglesias J, Aniceto R, Chang L, Lauchie S, Nasca A, Ogundeyi O, Sigmund C, Takemura S, Tran J, Langille C, Le Lacheur K, McLin S, Shinomiya A, Chklovskii DB, Meinertzhagen IA, Scheffer LK
    Proceedings of the National Academy of Sciences of the United States of America. 2015 Nov 3;112(44):13711-6. doi: 10.1073/pnas.1509820112

    We reconstructed the synaptic circuits of seven columns in the second neuropil or medulla behind the fly's compound eye. These neurons embody some of the most stereotyped circuits in one of the most miniaturized of animal brains. The reconstructions allow us, for the first time to our knowledge, to study variations between circuits in the medulla's neighboring columns. This variation in the number of synapses and the types of their synaptic partners has previously been little addressed because methods that visualize multiple circuits have not resolved detailed connections, and existing connectomic studies, which can see such connections, have not so far examined multiple reconstructions of the same circuit. Here, we address the omission by comparing the circuits common to all seven columns to assess variation in their connection strengths and the resultant rates of several different and distinct types of connection error. Error rates reveal that, overall, <1% of contacts are not part of a consensus circuit, and we classify those contacts that supplement (E+) or are missing from it (E-). Autapses, in which the same cell is both presynaptic and postsynaptic at the same synapse, are occasionally seen; two cells in particular, Dm9 and Mi1, form ≥20-fold more autapses than do other neurons. These results delimit the accuracy of developmental events that establish and normally maintain synaptic circuits with such precision, and thereby address the operation of such circuits. They also establish a precedent for error rates that will be required in the new science of connectomics.

    View Publication Page
    07/09/15 | A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system.
    Shinomiya K, Takemura S, Rivlin PK, Plaza SM, Scheffer LK, Meinertzhagen IA
    Frontiers in Neural Circuits. 2015;9:33. doi: 10.3389/fncir.2015.00033

    Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing-the internal chiasma-arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin.

    View Publication Page
    12/28/14 | Neural computation for rehabilitation.
    Hu X, Wang Y, Zhao T, Gunduz A
    Biomed Research International. 2014;2014:603985. doi: 10.1155/2014/603985