Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

4 Janelia Publications

Showing 1-4 of 4 results
Your Criteria:
    10/31/18 | Distinct descending motor cortex pathways and their roles in movement.
    Economo MN, Viswanathan S, Tasic B, Bas E, Winnubst J, Menon V, Graybuck LT, Nguyen TN, Smith KA, Yao Z, Wang L, Gerfen CR, Chandrashekar J, Zeng H, Looger LL, Svoboda K
    Nature. 2018 Nov;563(7729):79-84. doi: 10.1038/s41586-018-0642-9

    Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.

    View Publication Page
    10/30/18 | The subiculum is a patchwork of discrete subregions.
    Cembrowski MS, Wang L, Lemire AL, Copeland M, DiLisio SF, Clements J, Spruston N
    eLife. 2018 Oct 30;7:. doi: 10.7554/eLife.37701

    In the hippocampus, the classical pyramidal cell type of the subiculum acts as a primary output, conveying hippocampal signals to a diverse suite of downstream regions. Accumulating evidence suggests that the subiculum pyramidal cell population may actually be comprised of discrete subclasses. Here, we investigated the extent and organizational principles governing pyramidal cell heterogeneity throughout the mouse subiculum. Using single-cell RNA-seq, we find that the subiculum pyramidal cell population can be deconstructed into eight separable subclasses. These subclasses were mapped onto abutting spatial domains, ultimately producing a complex laminar and columnar organization with heterogeneity across classical dorsal-ventral, proximal-distal, and superficial-deep axes. We further show that these transcriptomically defined subclasses correspond to differential protein products and can be associated with specific projection targets. This work deconstructs the complex landscape of subiculum pyramidal cells into spatially segregated subclasses that may be observed, controlled, and interpreted in future experiments.

    View Publication Page
    07/02/18 | Apical and basal matrix remodeling control epithelial morphogenesis.
    Diaz-de-la-Loza M, Ray RP, Ganguly PS, Alt S, Davis JR, Hoppe A, Tapon N, Salbreux G, Thompson BJ
    Developmental Cell. 2018 Jul 02;46(1):23-39.e5. doi: 10.1016/j.devcel.2018.06.006

    Epithelial tissues can elongate in two dimensions by polarized cell intercalation, oriented cell division, or cell shape change, owing to local or global actomyosin contractile forces acting in the plane of the tissue. In addition, epithelia can undergo morphogenetic change in three dimensions. We show that elongation of the wings and legs of Drosophila involves a columnar-to-cuboidal cell shape change that reduces cell height and expands cell width. Remodeling of the apical extracellular matrix by the Stubble protease and basal matrix by MMP1/2 proteases induces wing and leg elongation. Matrix remodeling does not occur in the haltere, a limb that fails to elongate. Limb elongation is made anisotropic by planar polarized Myosin-II, which drives convergent extension along the proximal-distal axis. Subsequently, Myosin-II relocalizes to lateral membranes to accelerate columnar-to-cuboidal transition and isotropic tissue expansion. Thus, matrix remodeling induces dynamic changes in actomyosin contractility to drive epithelial morphogenesis in three dimensions.

    View Publication Page
    04/09/18 | Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila.
    Bentzur A, Shmueli A, Omesi L, Ryvkin J, Knapp J, Parnas M, Davis FP, Shohat-Ophir G
    PLoS Genetics. 2018 Apr 09;14(4):e1007328. doi: 10.1371/journal.pgen.1007328

    Living in a social environment requires the ability to respond to specific social stimuli and to incorporate information obtained from prior interactions into future ones. One of the mechanisms that facilitates social interaction is pheromone-based communication. In Drosophila melanogaster, the male-specific pheromone cis-vaccenyl acetate (cVA) elicits different responses in male and female flies, and functions to modulate behavior in a context and experience-dependent manner. Although it is the most studied pheromone in flies, the mechanisms that determine the complexity of the response, its intensity and final output with respect to social context, sex and prior interaction, are still not well understood. Here we explored the functional link between social interaction and pheromone-based communication and discovered an odorant binding protein that links social interaction to sex specific changes in cVA related responses. Odorant binding protein 69a (Obp69a) is expressed in auxiliary cells and secreted into the olfactory sensilla. Its expression is inversely regulated in male and female flies by social interactions: cVA exposure reduces its levels in male flies and increases its levels in female flies. Increasing or decreasing Obp69a levels by genetic means establishes a functional link between Obp69a levels and the extent of male aggression and female receptivity. We show that activation of cVA-sensing neurons is sufficeint to regulate Obp69a levels in the absence of cVA, and requires active neurotransmission between the sensory neuron to the second order olfactory neuron. The cross-talk between sensory neurons and non-neuronal auxiliary cells at the olfactory sensilla, represents an additional component in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies.

    View Publication Page