Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2578 Janelia Publications

Showing 181-190 of 2578 results
08/07/24 | Architecture and flexibility of native kinetochores revealed by structural studies utilizing a thermophilic yeast
Daniel J. Barrero , Sithara S. Wijeratne , Xiaowei Zhao , Grace F. Cunningham , Rui Yan , Christian R. Nelson , Yasuhiro Arimura , Hironori Funabiki , Charles L. Asbury , Zhiheng Yu , Radhika Subramanian , Sue Biggins
Curr Biol. 2024 Aug 07;S0960-9822(24):00939-4. doi: 10.1016/j.cub.2024.07.036

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

View Publication Page
03/06/24 | Assessing the impact of Brd2 depletion on chromatin compartmentalization
Advait Athreya , Liangqi Xie , Robert Tjian , Bin Zhang , Zhe J. Liu
bioRxiv. 2024 Mar 6:. doi: 10.1101/2024.03.02.583085

Recent insights into genome organization have emphasized the importance of A/B chromatin compartments. While our previous research showed that Brd2 depletion weakens compartment boundaries and promotes A/B mixing 1, Hinojosa-Gonzalez et al.2 were unable to replicate the findings. In response, we revisited our Micro-C data and successfully replicated the original results using the default parameters in the cooltools software package. We show that, after correcting inconsistencies with the selection and phasing of the compartment profiles, the decrease in B compartment strength persists but the change in compartment identity is to a much lesser extent than originally reported. To further assess the regulatory role of Brd2, we used saddle plots to determine the strength of compartmentalization and observed a consistent decrease of compartment strength especially at B compartments upon Brd2 depletion. This study highlights the importance of selecting appropriate parameters and analytical tools for compartment analysis and carefully interpreting the results.

View Publication Page
Integrative Imaging
03/04/24 | Four-dimensional quantitative analysis of cell plate development using lattice light sheet microscopy identifies robust transition points between growth phases.
Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G
Journal of Experimental Botany. 2024 Mar 4:. doi: 10.1093/jxb/erae091

Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodeling, and timely polysaccharide deposition, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM) we studied cell plate development in four dimensions, through the behavior of the cytokinesis specific GTPase YFP-RABA2a vesicles. We monitored the entire length of cell plate development, from its first emergence, with the aid of YFP-RABA2a, both in the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable, cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.

View Publication Page
02/28/24 | High-Performance Genetically Encoded Green Fluorescent Biosensors for Intracellular l-Lactate.
Hario S, Le GN, Sugimoto H, Takahashi-Yamashiro K, Nishinami S, Toda H, Li S, Marvin JS, Kuroda S, Drobizhev M, Terai T, Nasu Y, Campbell RE
ACS Central Science. 2024 Feb 28;10(2):402-416. doi: 10.1021/acscentsci.3c01250

l-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (Δ/ = 15 to 30 ), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities. We evaluated these biosensors in cultured cells and demonstrated their application in an preparation of brain tissue. Using these biosensors, we were able to detect glycolytic oscillations, which we analyzed and mathematically modeled.

View Publication Page
02/26/24 | MarShie: a clearing protocol for 3D analysis of single cells throughout the bone marrow at subcellular resolution.
Mertens TF, Liebheit AT, Ehl J, Köhler R, Rakhymzhan A, Woehler A, Katthän L, Ebel G, Liublin W, Kasapi A, Triantafyllopoulou A, Schulz TJ, Niesner RA, Hauser AE
Nature Communincations. 2024 Feb 26;15(1):1764. doi: 10.1038/s41467-024-45827-6

Analyzing immune cell interactions in the bone marrow is vital for understanding hematopoiesis and bone homeostasis. Three-dimensional analysis of the complete, intact bone marrow within the cortex of whole long bones remains a challenge, especially at subcellular resolution. We present a method that stabilizes the marrow and provides subcellular resolution of fluorescent signals throughout the murine femur, enabling identification and spatial characterization of hematopoietic and stromal cell subsets. By combining a pre-processing algorithm for stripe artifact removal with a machine-learning approach, we demonstrate reliable cell segmentation down to the deepest bone marrow regions. This reveals age-related changes in the marrow. It highlights the interaction between CXCR1 cells and the vascular system in homeostasis, in contrast to other myeloid cell types, and reveals their spatial characteristics after injury. The broad applicability of this method will contribute to a better understanding of bone marrow biology.

View Publication Page
02/29/24 | Recommendations for accelerating open preprint peer review to improve the culture of science
Avissar-Whiting M, Belliard F, Bertozzi SM, Brand A, Brown K, Clément-Stoneham G, Dawson S, Dey G, Ecer D, Edmunds SC, Farley A, Fischer TD, Franko M, Fraser JS, Funk K, Ganier C, Harrison M, Hatch A, Hazlett H, Hindle S, Hook DW, Hurst P, Kamoun S, Kiley R, Lacy MM, LaFlamme M, Lawrence R, Lemberger T, Leptin M, Lumb E, MacCallum CJ, Marcum CS, Marinello G, Mendonça A, Monaco S, Neves K, Pattinson D, Polka JK, Puebla I, Rittman M, Royle SJ, Saderi D, Sever R, Shearer K, Spiro JE, Stern B, Taraborelli D, Vale R, Vasquez CG, Waltman L, Watt FM, Weinberg ZY, Williams M
PLOS Biology. 2024 Feb 29;22(2):e3002502. doi: 10.1371/journal.pbio.300250210.1371/journal.pbio.3002502.g001

Peer review is an important part of the scientific process, but traditional peer review at journals is coming under increased scrutiny for its inefficiency and lack of transparency. As preprints become more widely used and accepted, they raise the possibility of rethinking the peer-review process. Preprints are enabling new forms of peer review that have the potential to be more thorough, inclusive, and collegial than traditional journal peer review, and to thus fundamentally shift the culture of peer review toward constructive collaboration. In this Consensus View, we make a call to action to stakeholders in the community to accelerate the growing momentum of preprint sharing and provide recommendations to empower researchers to provide open and constructive peer review for preprints.

View Publication Page
02/28/24 | Sensory neuron population expansion enhances odor tracking without sensitizing projection neurons
Suguru Takagi , Gizem Sancer , Liliane Abuin , S. David Stupski , J. Roman Arguello , Lucia L. Prieto-Godino , David L. Stern , Steeve Cruchet , Raquel Álvarez-Ocaña , Carl F. R. Wienecke , Floris van Breugel , James M. Jeanne , Thomas O. Auer , Richard Benton
bioRxiv. 2024 Feb 28:. doi: 10.1101/2023.09.15.556782

The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.

View Publication Page
02/29/24 | The cell-type-specific spatial organization of the anterior thalamic nuclei of the mouse brain.
Kapustina M, Zhang AA, Tsai JY, Bristow BN, Kraus L, Sullivan KE, Erwin SR, Wang L, Stach TR, Clements J, Lemire AL, Cembrowski MS
Cell Reports. 2024 Feb 29;43(3):113842. doi: 10.1016/j.celrep.2024.113842

Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.

View Publication Page
02/23/24 | Recording physiological history of cells with chemical labeling.
Huppertz M, Wilhelm J, Grenier V, Schneider MW, Falt T, Porzberg N, Hausmann D, Hoffmann DC, Hai L, Tarnawski M, Pino G, Slanchev K, Kolb I, Acuna C, Fenk LM, Baier H, Hiblot J, Johnsson K
Science. 2024 Feb 23;383(6685):890-897. doi: 10.1126/science.adg0812

Recordings of the physiological history of cells provide insights into biological processes, yet obtaining such recordings is a challenge. To address this, we introduce a method to record transient cellular events for later analysis. We designed proteins that become labeled in the presence of both a specific cellular activity and a fluorescent substrate. The recording period is set by the presence of the substrate, whereas the cellular activity controls the degree of the labeling. The use of distinguishable substrates enabled the recording of successive periods of activity. We recorded protein-protein interactions, G protein-coupled receptor activation, and increases in intracellular calcium. Recordings of elevated calcium levels allowed selections of cells from heterogeneous populations for transcriptomic analysis and tracking of neuronal activities in flies and zebrafish.

View Publication Page
02/24/24 | A series of spontaneously blinking dyes for super-resolution microscopy
Katie L. Holland , Sarah E. Plutkis , Timothy A. Daugird , Abhishek Sau , Jonathan B. Grimm , Brian P. English , Qinsi Zheng , Sandeep Dave , Fariha Rahman , Liangqi Xie , Peng Dong , Ariana N. Tkachuk , Timothy A. Brown , Robert H. Singer , Zhe Liu , Catherine G. Galbraith , Siegfried M. Musser , Wesley R. Legant , Luke D. Lavis
bioRxiv. 2024 Feb 24:. doi: 10.1101/2024.02.23.581625

Spontaneously blinking fluorophores permit the detection and localization of individual molecules without reducing buffers or caging groups, thus simplifying single-molecule localization microscopy (SMLM). The intrinsic blinking properties of such dyes are dictated by molecular structure and modulated by environment, which can limit utility. We report a series of tuned spontaneously blinking dyes with duty cycles that span two orders of magnitude, allowing facile SMLM in cells and dense biomolecular structures.

View Publication Page