Filter
Associated Lab
- Aguilera Castrejon Lab (1) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (50) Apply Ahrens Lab filter
- Aso Lab (40) Apply Aso Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (99) Apply Betzig Lab filter
- Beyene Lab (8) Apply Beyene Lab filter
- Bock Lab (14) Apply Bock Lab filter
- Branson Lab (48) Apply Branson Lab filter
- Card Lab (34) Apply Card Lab filter
- Cardona Lab (44) Apply Cardona Lab filter
- Chklovskii Lab (10) Apply Chklovskii Lab filter
- Clapham Lab (12) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (8) Apply Darshan Lab filter
- Dickson Lab (32) Apply Dickson Lab filter
- Druckmann Lab (21) Apply Druckmann Lab filter
- Dudman Lab (36) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (4) Apply Egnor Lab filter
- Espinosa Medina Lab (14) Apply Espinosa Medina Lab filter
- Feliciano Lab (7) Apply Feliciano Lab filter
- Fetter Lab (31) Apply Fetter Lab filter
- Fitzgerald Lab (16) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (37) Apply Funke Lab filter
- Gonen Lab (59) Apply Gonen Lab filter
- Grigorieff Lab (34) Apply Grigorieff Lab filter
- Harris Lab (49) Apply Harris Lab filter
- Heberlein Lab (13) Apply Heberlein Lab filter
- Hermundstad Lab (21) Apply Hermundstad Lab filter
- Hess Lab (70) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (42) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Karpova Lab (13) Apply Karpova Lab filter
- Keleman Lab (8) Apply Keleman Lab filter
- Keller Lab (61) Apply Keller Lab filter
- Koay Lab (1) Apply Koay Lab filter
- Lavis Lab (129) Apply Lavis Lab filter
- Lee (Albert) Lab (29) Apply Lee (Albert) Lab filter
- Leonardo Lab (19) Apply Leonardo Lab filter
- Li Lab (3) Apply Li Lab filter
- Lippincott-Schwartz Lab (91) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (56) Apply Liu (Zhe) Lab filter
- Looger Lab (137) Apply Looger Lab filter
- Magee Lab (31) Apply Magee Lab filter
- Menon Lab (12) Apply Menon Lab filter
- Murphy Lab (6) Apply Murphy Lab filter
- O'Shea Lab (5) Apply O'Shea Lab filter
- Otopalik Lab (1) Apply Otopalik Lab filter
- Pachitariu Lab (32) Apply Pachitariu Lab filter
- Pastalkova Lab (5) Apply Pastalkova Lab filter
- Pavlopoulos Lab (7) Apply Pavlopoulos Lab filter
- Pedram Lab (3) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (45) Apply Reiser Lab filter
- Riddiford Lab (20) Apply Riddiford Lab filter
- Romani Lab (31) Apply Romani Lab filter
- Rubin Lab (103) Apply Rubin Lab filter
- Saalfeld Lab (43) Apply Saalfeld Lab filter
- Satou Lab (1) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (49) Apply Schreiter Lab filter
- Shroff Lab (26) Apply Shroff Lab filter
- Simpson Lab (18) Apply Simpson Lab filter
- Singer Lab (37) Apply Singer Lab filter
- Spruston Lab (56) Apply Spruston Lab filter
- Stern Lab (71) Apply Stern Lab filter
- Sternson Lab (47) Apply Sternson Lab filter
- Stringer Lab (28) Apply Stringer Lab filter
- Svoboda Lab (131) Apply Svoboda Lab filter
- Tebo Lab (7) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (15) Apply Tillberg Lab filter
- Tjian Lab (17) Apply Tjian Lab filter
- Truman Lab (58) Apply Truman Lab filter
- Turaga Lab (35) Apply Turaga Lab filter
- Turner Lab (25) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (14) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (5) Apply Wang (Shaohe) Lab filter
- Wu Lab (8) Apply Wu Lab filter
- Zlatic Lab (26) Apply Zlatic Lab filter
- Zuker Lab (5) Apply Zuker Lab filter
Associated Project Team
- CellMap (10) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (1) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (10) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (53) Apply FlyEM filter
- FlyLight (47) Apply FlyLight filter
- GENIE (41) Apply GENIE filter
- Integrative Imaging (1) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (17) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (45) Apply Transcription Imaging filter
Associated Support Team
- Project Pipeline Support (3) Apply Project Pipeline Support filter
- Anatomy and Histology (18) Apply Anatomy and Histology filter
- Cryo-Electron Microscopy (33) Apply Cryo-Electron Microscopy filter
- Electron Microscopy (15) Apply Electron Microscopy filter
- Gene Targeting and Transgenics (11) Apply Gene Targeting and Transgenics filter
- Integrative Imaging (16) Apply Integrative Imaging filter
- Invertebrate Shared Resource (40) Apply Invertebrate Shared Resource filter
- Janelia Experimental Technology (36) Apply Janelia Experimental Technology filter
- Management Team (1) Apply Management Team filter
- Molecular Genomics (15) Apply Molecular Genomics filter
- Primary & iPS Cell Culture (14) Apply Primary & iPS Cell Culture filter
- Project Technical Resources (46) Apply Project Technical Resources filter
- Quantitative Genomics (19) Apply Quantitative Genomics filter
- Scientific Computing Software (85) Apply Scientific Computing Software filter
- Scientific Computing Systems (6) Apply Scientific Computing Systems filter
- Viral Tools (14) Apply Viral Tools filter
- Vivarium (6) Apply Vivarium filter
Publication Date
- 2025 (14) Apply 2025 filter
- 2024 (232) Apply 2024 filter
- 2023 (163) Apply 2023 filter
- 2022 (167) Apply 2022 filter
- 2021 (175) Apply 2021 filter
- 2020 (177) Apply 2020 filter
- 2019 (177) Apply 2019 filter
- 2018 (206) Apply 2018 filter
- 2017 (186) Apply 2017 filter
- 2016 (191) Apply 2016 filter
- 2015 (195) Apply 2015 filter
- 2014 (190) Apply 2014 filter
- 2013 (136) Apply 2013 filter
- 2012 (112) Apply 2012 filter
- 2011 (98) Apply 2011 filter
- 2010 (61) Apply 2010 filter
- 2009 (56) Apply 2009 filter
- 2008 (40) Apply 2008 filter
- 2007 (21) Apply 2007 filter
- 2006 (3) Apply 2006 filter
2600 Janelia Publications
Showing 221-230 of 2600 resultsThe endoplasmic reticulum (ER) is an important regulator of Ca2+ in cells and dysregulation of ER calcium homeostasis can lead to numerous pathologies. Understanding how various pharmacological and genetic perturbations of ER Ca2+ homeostasis impacts cellular physiology would likely be facilitated by more quantitative measurements of ER Ca2+ levels that allow easier comparisons across conditions. Here, we developed a ratiometric version of our original ER-GCaMP probe that allows for more quantitative comparisons of the concentration of Ca2+ in the ER across cell types and sub-cellular compartments. Using this approach we show that the resting concentration of ER Ca2+ in primary dissociated neurons is substantially lower than that in measured in embryonic fibroblasts.
The nervous system evolved to enable navigation throughout the environment in the pursuit of resources. Evolutionarily newer structures allowed increasingly complex adaptations but necessarily added redundancy. A dominant view of movement neuroscientists is that there is a one-to-one mapping between brain region and function. However, recent experimental data is hard to reconcile with the most conservative interpretation of this framework, suggesting a degree of functional redundancy during the performance of well-learned, constrained behaviors. This apparent redundancy likely stems from the bidirectional interactions between the various cortical and subcortical structures involved in motor control. We posit that these bidirectional connections enable flexible interactions across structures that change depending upon behavioral demands, such as during acquisition, execution or adaptation of a skill. Observing the system across both multiple actions and behavioral timescales can help isolate the functional contributions of individual structures, leading to an integrated understanding of the neural control of movement.
Generalist methods for cellular segmentation have good out-of-the-box performance on a variety of image types. However, existing methods struggle for images that are degraded by noise, blurred or undersampled, all of which are common in microscopy. We focused the development of Cellpose3 on addressing these cases, and here we demonstrate substantial out-of-the-box gains in segmentation and image quality for noisy, blurry or undersampled images. Unlike previous approaches, which train models to restore pixel values, we trained Cellpose3 to output images that are well-segmented by a generalist segmentation model, while maintaining perceptual similarity to the target images. Furthermore, we trained the restoration models on a large, varied collection of datasets, thus ensuring good generalization to user images. We provide these tools as “one-click” buttons inside the graphical interface of Cellpose as well as in the Cellpose API.
Synchronous neuronal ensembles play a pivotal role in the consolidation of long-term memory in the hippocampus. However, their organization during the acquisition of spatial memory remains less clear. In this study, we used neuronal population voltage imaging to investigate the synchronization patterns of CA1 pyramidal neuronal ensembles during the exploration of a new environment, a critical phase for spatial memory acquisition. We found synchronous ensembles comprising approximately 40% of CA1 pyramidal neurons, firing simultaneously in brief windows (∼25ms) during immobility and locomotion in novel exploration. Notably, these synchronous ensembles were not associated with ripple oscillations but were instead phase-locked to local field potential theta waves. Specifically, the subthreshold membrane potentials of neurons exhibited coherent theta oscillations with a depolarizing peak at the moment of synchrony. Among newly formed place cells, pairs with more robust synchronization during locomotion displayed more distinct place-specific activities. These findings underscore the role of synchronous ensembles in coordinating place cells of different place fields.
Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. While anti-human immunodeficiency virus type 1 (HIV-1) host restriction factors have been identified, most of them are antagonized by viral proteins. This has severely hindered their development in anti-HIV-1 therapy. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel anti-HIV-1 factor that is not antagonized by viral proteins. ZCCHC3 suppresses production of HIV-1 and other retroviruses. We show that ZCCHC3 acts by binding to Gag nucleocapsid protein via zinc-finger motifs. This prevents interaction between the Gag nucleocapsid protein and viral genome and results in production of genome-deficient virions. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. Such a dual antiviral mechanism is distinct from that of any other known host restriction factors. Therefore, ZCCHC3 is a novel potential target in anti-HIV-1 therapy.
Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
Light sheet microscopes enable rapid, high-resolution imaging of biological specimens; however, biological processes span a variety of spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality and constant imaging parameters. To overcome this limitation, we present smartLLSM, a microscope that incorporates AI-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light sheet microscopy. We apply this technology to two major scenarios. First, we demonstrate that the instrument provides population-level statistics of cell cycle states across thousands of cells on a coverslip. Second, we show that by using real-time image feedback to switch between imaging modes, the instrument autonomously captures multicolor 3D datasets or 4D time-lapse movies of dividing cells at rates that dramatically exceed human capabilities. Quantitative image analysis on high-content + high-throughput datasets reveal kinetochore and chromosome dynamics in dividing cells and determine the effects of drug perturbation on cells in specific mitotic stages. This new methodology enables efficient detection of rare events within a heterogeneous cell population and records these processes with high spatiotemporal 4D imaging over statistically significant replicates.
The density and distribution of regulatory information in non-coding DNA of eukaryotic genomes is largely unknown. Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the D. melanogaster genome is functionally relevant. This estimate is difficult to reconcile with the commonly accepted idea that enhancers are compact regulatory elements that generally encompass less than 1 kilobase of DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kilobases of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory architecture that drives svb expression in the abdominal pupal epidermis is organized in a dramatically different way than the information that drives svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact and dispersed enhancers, svb expression in the pupal epidermis is driven by large regions with enhancer activity, which occupy a great portion of the svb cis-regulatory DNA. We observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved non-coding DNA of the Drosophila genome is contained within putative regulatory DNA. These results suggest that part of the evolutionary constraint on non-coding DNA of Drosophila is explained by the density of regulatory information.
The brain exhibits rich oscillatory dynamics that vary across tasks and states, such as the EEG oscillations that define sleep. These oscillations play critical roles in cognition and arousal, but the brainwide mechanisms underlying them are not yet described. Using simultaneous EEG and fast fMRI in subjects drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI dynamics predict alpha (8-12 Hz) and delta (1-4 Hz) rhythms. We predicted moment-by-moment EEG power from fMRI activity in held-out subjects, and found that information about alpha power was represented by a remarkably small set of regions, segregated in two distinct networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify distributed networks that predict delta and alpha rhythms, and establish a computational framework for investigating fMRI brainwide dynamics underlying EEG oscillations.
How memories of past events influence behavior is a key question in neuroscience. The major associative learning center in Drosophila, the Mushroom Body (MB), communicates to the rest of the brain through Mushroom Body Output Neurons (MBONs). While 21 MBON cell types have their dendrites confined to small compartments of the MB lobes, analysis of EM connectomes revealed the presence of an additional 14 MBON cell types that are atypical in having dendritic input both within the MB lobes and in adjacent brain regions. Genetic reagents for manipulating atypical MBONs and experimental data on their functions has been lacking. In this report we describe new cell-type-specific GAL4 drivers for many MBONs, including the majority of atypical MBONs. Using these genetic reagents, we conducted optogenetic activation screening to examine their ability to drive behaviors and learning. These reagents provide important new tools for the study of complex behaviors in Drosophila.