Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

1817 Janelia Publications

Showing 41-50 of 1817 results
08/01/20 | Two-parameter mobility assessments discriminate diverse regulatory factor behaviors in chromatin.
Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS
Molecular Cell. 2020 Aug 1;79(4):677. doi: 10.1016/j.molcel.2020.05.036

Enzymatic probes of chromatin structure reveal accessible versus inaccessible chromatin states, while super-resolution microscopy reveals a continuum of chromatin compaction states. Characterizing histone H2B movements by single-molecule tracking (SMT), we resolved chromatin domains ranging from low to high mobility and displaying different subnuclear localizations patterns. Heterochromatin constituents correlated with the lowest mobility chromatin, whereas transcription factors varied widely with regard to their respective mobility with low- or high-mobility chromatin. Pioneer transcription factors, which bind nucleosomes, can access the low-mobility chromatin domains, whereas weak or non-nucleosome binding factors are excluded from the domains and enriched in higher mobility domains. Nonspecific DNA and nucleosome binding accounted for most of the low mobility of strong nucleosome interactor FOXA1. Our analysis shows how the parameters of the mobility of chromatin-bound factors, but not their diffusion behaviors or SMT-residence times within chromatin, distinguish functional characteristics of different chromatin-interacting proteins.

View Publication Page
08/01/20 | Wiring patterns from auditory sensory neurons to the escape and song-relay pathways in fruit flies.
Kim H, Horigome M, Ishikawa Y, Li F, Lauritzen JS, Card G, Bock DD, Kamikouchi A
Journal of Comparative Neurology. 2020 Aug 01;528(12):2068. doi: 10.1002/cne.24877

Many animals rely on acoustic cues to decide what action to take next. Unraveling the wiring patterns of the auditory neural pathways is prerequisite for understanding such information processing. Here we reconstructed the first step of the auditory neural pathway in the fruit fly brain, from primary to secondary auditory neurons, at the resolution of transmission electron microscopy. By tracing axons of two major subgroups of auditory sensory neurons in fruit flies, low-frequency tuned Johnston's organ (JO)-B neurons and high-frequency tuned JO-A neurons, we observed extensive connections from JO-B neurons to the main second-order neurons in both the song-relay and escape pathways. In contrast, JO-A neurons connected strongly to a neuron in the escape pathway. Our findings suggest that heterogeneous JO neuronal populations could be recruited to modify escape behavior whereas only specific JO neurons contribute to courtship behavior. We also found that all JO neurons have postsynaptic sites at their axons. Presynaptic modulation at the output sites of JO neurons could affect information processing of the auditory neural pathway in flies. This article is protected by copyright. All rights reserved.

View Publication Page
Zlatic Lab
09/29/20 | Identification of dopaminergic neurons that can both establish associative memory and acutely terminate its behavioral expression.
Schleyer M, Weiglein A, Thoener J, Strauch M, Hartenstein V, Kantar Weigelt M, Schuller S, Saumweber T, Eichler K, Rohwedder A, Merhof D, Zlatic M, Thum AS, Gerber B
Journal of Neuroscience. 2020 Jul 29;40(31):5990-6006. doi: 10.1523/JNEUROSCI.0290-20.2020

An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search is successful is important to all animals. Here we study the neuronal circuitry that allows larval of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM-data-based analyses of synaptic organization. We find that optogenetic activation of the dopaminergic neuron DAN-i1 can both establish memory during training, and acutely terminate learned search behavior in a subsequent recall test. Its activation leaves innate behavior unaffected, however. Specifically, DAN-i1 activation can establish associative memories of opposite valence upon paired and unpaired training with odor, and its activation during the recall test can terminate the search behavior resulting from either of these memories. Our results further suggest that in its behavioral significance DAN-i1 activation resembles but does not equal sugar reward. Dendrogram analyses of all the synaptic connections between DAN-i1 and its two main targets, the Kenyon cells and the mushroom body output neuron MBON-i1, further suggest that the DAN-i1 signals during training and during the recall test could be delivered to the Kenyon cells and to MBON-i1, respectively, within previously unrecognized, locally confined branching structures. This would provide an elegant circuit motif to terminate search upon its successful completion.In the struggle for survival animals have to explore their environment in search of food. Once food is found, however, it is adaptive to prioritize exploiting it over continuing a search that would now be as pointless as searching for the glasses you are wearing. This exploration-exploitation trade-off is important for animals and humans, as well as for technical search devices. We investigate which of the only 10,000 neurons of a fruit fly larva can tip the balance in this trade-off, and identify a single dopamine neuron called DAN-i1 that can do so. Given the similarities in dopamine neuron function across the animal kingdom, this may reflect a general principle of how search is terminated once it is successful.

View Publication Page
07/27/20 | A general method to optimize and functionalize red-shifted rhodamine dyes.
Grimm JB, Tkachuk AN, Xie L, Choi H, Mohar B, Falco N, Schaefer K, Patel R, Zheng Q, Liu Z, Lippincott-Schwartz J, Brown TA, Lavis LD
Nature Methods. 2020 Jul 27:. doi: 10.1038/s41592-020-0909-6

Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted 'Janelia Fluor' (JF) dyes useful for biological imaging experiments in cells and in vivo.

View Publication Page
07/27/20 | A programmable sequence of reporters for lineage analysis.
Garcia-Marques J, Espinosa-Medina I, Ku K, Yang C, Koyama M, Yu H, Lee T
Nature Neuroscience. 2020 Jul 27:. doi: 10.1038/s41593-020-0676-9

We present CLADES (cell lineage access driven by an edition sequence), a technology for cell lineage studies based on CRISPR-Cas9 techniques. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a predetermined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, thereby coupling birth order to reporter expression. This system, which can also be temporally induced by heat shock, enables the temporal resolution of lineage development and can therefore be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, predominantly marking each generation with the corresponding combination of reporters. CLADES therefore offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.

View Publication Page
07/27/20 | Seeing the forest for the trees in obesity.
Sternson SM
Nature Metabolism. 2020 Jul 27:. doi: 10.1038/s42255-020-0259-9
07/01/20 | Towards accurate and unbiased imaging-based differentiation of Parkinson's disease, progressive supranuclear palsy and corticobasal syndrome.
Correia MM, Rittman T, Barnes CL, Coyle-Gilchrist IT, Ghosh B, Hughes LE, Rowe JB
Brain Communications. 2020 Jul 1;2(1):fcaa051. doi: 10.1093/braincomms/fcaa051

The early and accurate differential diagnosis of parkinsonian disorders is still a significant challenge for clinicians. In recent years, a number of studies have used magnetic resonance imaging data combined with machine learning and statistical classifiers to successfully differentiate between different forms of Parkinsonism. However, several questions and methodological issues remain, to minimize bias and artefact-driven classification. In this study, we compared different approaches for feature selection, as well as different magnetic resonance imaging modalities, with well-matched patient groups and tightly controlling for data quality issues related to patient motion. Our sample was drawn from a cohort of 69 healthy controls, and patients with idiopathic Parkinson's disease (= 35), progressive supranuclear palsy Richardson's syndrome (= 52) and corticobasal syndrome (= 36). Participants underwent standardized T1-weighted and diffusion-weighted magnetic resonance imaging. Strict data quality control and group matching reduced the control and patient numbers to 43, 32, 33 and 26, respectively. We compared two different methods for feature selection and dimensionality reduction: whole-brain principal components analysis, and an anatomical region-of-interest based approach. In both cases, support vector machines were used to construct a statistical model for pairwise classification of healthy controls and patients. The accuracy of each model was estimated using a leave-two-out cross-validation approach, as well as an independent validation using a different set of subjects. Our cross-validation results suggest that using principal components analysis for feature extraction provides higher classification accuracies when compared to a region-of-interest based approach. However, the differences between the two feature extraction methods were significantly reduced when an independent sample was used for validation, suggesting that the principal components analysis approach may be more vulnerable to overfitting with cross-validation. Both T1-weighted and diffusion magnetic resonance imaging data could be used to successfully differentiate between subject groups, with neither modality outperforming the other across all pairwise comparisons in the cross-validation analysis. However, features obtained from diffusion magnetic resonance imaging data resulted in significantly higher classification accuracies when an independent validation cohort was used. Overall, our results support the use of statistical classification approaches for differential diagnosis of parkinsonian disorders. However, classification accuracy can be affected by group size, age, sex and movement artefacts. With appropriate controls and out-of-sample cross validation, diagnostic biomarker evaluation including magnetic resonance imaging based classifiers may be an important adjunct to clinical evaluation.

View Publication Page
07/07/20 | Multifield and inverse-contrast switching of magnetocaloric high contrast ratio MRI labels.
Barbic M, Dodd SJ, ElBidweihy H, Dilley NR, Marcheschi B, Huston AL, Morris HD, Koretsky AP
Magnetic Resonance in Medicine. 2020 Jul 07;85(1):506-17. doi: 10.1002/mrm.28400

PURPOSE: Demonstrating multifield and inverse contrast switching of magnetocaloric high contrast ratio MRI labels that either have increasing or decreasing moment versus temperature slopes depending on the material at physiological temperatures and different MRI magnetic field strengths.

METHODS: Two iron-rhodium samples of different purity (99% and 99.9%) and a lanthanum-iron-silicon sample were obtained from commercial vendors. Temperature and magnetic field-dependent magnetic moment measurements of the samples were performed on a vibrating sample magnetometer. Temperature-dependent MRI of different iron-rhodium and lanthanum-iron-silicon samples were performed on 3 different MRI scanners at 1 Tesla (T), 4.7T, and 7T.

RESULTS: Sharp, first-order magnetic phase transition of each iron-rhodium sample at a physiologically relevant temperature (~37°C) but at different MRI magnetic fields (1T, 4.7T, and 7T, depending on the sample) showed clear image contrast changes in temperature-dependent MRI. Iron-rhodium and lanthanum-iron-silicon samples with sharp, first-order magnetic phase transitions at the same MRI field of 1T and physiological temperature of 37°C, but with positive and negative slope of magnetization versus temperature, respectively, showed clear inverse contrast image changes. Temperature-dependent MRI on individual microparticle samples of lanthanum-iron-silicon also showed sharp image contrast changes.

CONCLUSION: Magnetocaloric materials of different purity and composition were demonstrated to act as diverse high contrast ratio switchable MRI contrast agents. Thus, we show that a range of magnetocaloric materials can be optimized for unique image contrast response under MRI-appropriate conditions at physiological temperatures and be controllably switched in situ.

View Publication Page
07/20/20 | Microdomains form on the luminal face of neuronal extracellular vesicle membranes.
Matthies D, Lee NY, Gatera I, Pasolli HA, Zhao X, Liu H, Walpita D, Liu Z, Yu Z, Ioannou MS
Scientific Reports. 2020 Jul 20;10(1):11953. doi: 10.1038/s41598-020-68436-x

Extracellular vesicles (EVs) are important mediators of cell-to-cell communication and have been implicated in several pathologies including those of the central nervous system. They are released by all cell types, including neurons, and are highly heterogenous in size and composition. Yet much remains unknown regarding the biophysical characteristics of different EVs. Here, using cryo-electron microscopy (cryoEM), we analyzed the size distribution and morphology of EVs released from primary cortical neurons. We discovered massive macromolecular clusters on the luminal face of EV membranes. These clusters are predominantly found on medium-sized vesicles, suggesting that they may be specific to microvesicles as opposed to exosomes. We propose that these clusters serve as microdomains for EV signaling and play an important role in EV physiology.

View Publication Page
07/13/20 | Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites.
Liang X, Kokes M, Fetter RD, Sallee MD, Moore AW, Feldman JL, Shen K
eLife. 2020 Jul 13;9:. doi: 10.7554/eLife.56547

A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in the dendritic growth cone contains a non-centrosomal microtubule organizing center, which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex γ-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.

View Publication Page