Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

1765 Janelia Publications

Showing 41-50 of 1765 results
03/10/20 | Layer 6b Is driven by intracortical long-range projection neurons.
Zolnik TA, Ledderose J, Toumazou M, Trimbuch T, Oram T, Rosenmund C, Eickholt BJ, Sachdev RN, Larkum ME
Cell Reports. 2020 Mar 10;30(10):3492 - 3505.e5. doi: 10.1016/j.celrep.2020.02.044

Layer 6b (L6b), the deepest neocortical layer, projects to cortical targets and higher-order thalamus and is the only layer responsive to the wake-promoting neuropeptide orexin/hypocretin. These characteristics suggest that L6b can strongly modulate brain state, but projections to L6b and their influence remain unknown. Here, we examine the inputs to L6b ex vivo in the mouse primary somatosensory cortex with rabies-based retrograde tracing and channelrhodopsin-assisted circuit mapping in brain slices. We find that L6b receives its strongest excitatory input from intracortical long-range projection neurons, including those in the contralateral hemisphere. In contrast, local intracortical input and thalamocortical input were significantly weaker. Moreover, our data suggest that L6b receives far less thalamocortical input than other cortical layers. L6b was most strongly inhibited by PV and SST interneurons. This study shows that L6b integrates long-range intracortical information and is not part of the traditional thalamocortical loop.

View Publication Page
03/06/20 | A large genomic insertion containing a duplicated follistatin gene is linked to the pea aphid male wing dimorphism.
Li B, Bickel RD, Parker BJ, Saleh Ziabari O, Liu F, Vellichirammal NN, Simon J, Stern DL, Brisson JA
eLife. 2020 Mar 06;9:. doi: 10.7554/eLife.50608

Wing dimorphisms have long served as models for examining the ecological and evolutionary tradeoffs associated with alternative phenotypes. Here, we investigated the genetic cause of the pea aphid () male wing dimorphism, wherein males exhibit one of two morphologies that differ in correlated traits that include the presence or absence of wings. We mapped this trait difference to a single genomic region and, using third generation, long-read sequencing, we identified a 120 kb insertion in the wingless allele. This insertion includes a duplicated gene, which is a strong candidate gene in the minimal mapped interval to cause the dimorphism. We found that both alleles were present prior to pea aphid biotype lineage diversification, we estimated that the insertion occurred millions of years ago, and we propose that both alleles have been maintained in the species, likely due to balancing selection.

View Publication Page
03/04/20 | Cell-type specific outcome representation in primary motor cortex.
Lavzin M, Levy S, Benisty H, Dubin U, Brosh Z, Aeed F, Mensh BD, Schiller Y, Meir R, Barak O, Talmon R, Hantman AW, Schiller J
bioRxiv. 2020 Mar 04:. doi: 10.1101/2020.03.03.971077

Adaptive movements are critical to animal survival. To guide future actions, the brain monitors different outcomes, including achievement of movement and appetitive goals. The nature of outcome signals and their neuronal and network realization in motor cortex (M1), which commands the performance of skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in murine M1. We find two populations of layer 2-3 neurons, “success”- and “failure” related neurons that develop with training and report end-result of trials. In these neurons, prolonged responses were recorded after success or failure trials, independent of reward and kinematics. In contrast, the initial state of layer-5 pyramidal tract neurons contains a memory trace of the previous trial’s outcome. Inter-trial cortical activity was needed to learn new task requirements. These M1 reflective layer-specific performance outcome signals, can support reinforcement motor learning of skilled behavior.

View Publication Page
03/04/20 | Recurrent interactions in local cortical circuits.
Peron S, Pancholi R, Voelcker B, Wittenbach JD, Ólafsdóttir HF, Freeman J, Svoboda K
Nature. 2020 Mar 04:. doi: 10.1038/s41586-020-2062-x

Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations. Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average. Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes, and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually. Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity and photoablating neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10-20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.

View Publication Page
03/02/20 | Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.
Wu J, Liang Y, Chen S, Hsu C, Chavarha M, Evans SW, Shi D, Lin MZ, Tsia KK, Ji N
Nature Methods. 2020 Mar 02;17(3):287-290. doi: 10.1038/s41592-020-0762-7

Understanding information processing in the brain requires monitoring neuronal activity at high spatiotemporal resolution. Using an ultrafast two-photon fluorescence microscope empowered by all-optical laser scanning, we imaged neuronal activity in vivo at up to 3,000 frames per second and submicrometer spatial resolution. This imaging method enabled monitoring of both supra- and subthreshold electrical activity down to 345 μm below the brain surface in head-fixed awake mice.

View Publication Page
03/02/20 | Rapid mesoscale volumetric imaging of neural activity with synaptic resolution.
Lu R, Liang Y, Meng G, Zhou P, Svoboda K, Paninski L, Ji N
Nature Methods. 2020 Mar 02;17(3):291-4. doi: 10.1038/s41592-020-0760-9

Imaging neurons and neural circuits over large volumes at high speed and subcellular resolution is a difficult task. Incorporating a Bessel focus module into a two-photon fluorescence mesoscope, we achieved rapid volumetric imaging of neural activity over the mesoscale with synaptic resolution. We applied the technology to calcium imaging of entire dendritic spans of neurons as well as neural ensembles within multiple cortical regions over two hemispheres of the awake mouse brain.

View Publication Page
03/01/20 | Characterization of the Genetic Architecture Underlying Eye Size Variation Within Drosophila melanogaster and Drosophila simulans.
Gaspar P, Arif S, Sumner-Rooney L, Kittelmann M, Bodey AJ, Stern DL, Nunes MD, McGregor AP
Genes|Genomes|Genetics. 2020 Mar 01;10(3):1005-18. doi: 10.1534/g3.119.400877
03/01/20 | Toward nanoscale localization of memory engrams in Drosophila.
Aso Y, Rubin GM
Journal of Neurogenetics. 2020 Mar 01;34(1):151-55. doi: 10.1080/01677063.2020.1715973

The Mushroom Body (MB) is the primary location of stored associative memories in the Drosophila brain. We discuss recent advances in understanding the MB's neuronal circuits made using advanced light microscopic methods and cell-type-specific genetic tools. We also review how the compartmentalized nature of the MB's organization allows this brain area to form and store memories with widely different dynamics.

View Publication Page
02/26/20 | Accurate localization of linear probe electrodes across multiple brains.
Liu LD, Chen S, Economo MN, Li N, Svoboda K
bioRxiv. 2020 Feb 26:
03/02/20 | Neural circuitry linking mating and egg laying in Drosophila females.
Wang F, Wang K, Forknall N, Patrick C, Yang T, Parekh R, Bock D, Dickson BJ
Nature. 2020 Mar 02;579(7797):101-105. doi: 10.1038/s41586-020-2055-9

Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying. Sex peptide is detected by sensory neurons in the uterus, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.

View Publication Page