Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Card Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

41 Publications

Showing 21-30 of 41 results
Card Lab
12/01/20 | Multi-regional circuits underlying visually guided decision-making in Drosophila.
Cheong HS, Siwanowicz I, Card GM
Current Opinion in Neurobiology. 2020 Dec 01;65:77-87. doi: 10.1016/j.conb.2020.10.010

Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.

View Publication Page
Card LabBock LabFlyLight
02/28/19 | Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway.
Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, von Reyn CR, Card GM
Current Biology : CB. 2019 Feb 28;29(6):1073. doi: 10.1016/j.cub.2019.01.079

Identified neuron classes in vertebrate cortical [1-4] and subcortical [5-8] areas and invertebrate peripheral [9-11] and central [12-14] brain neuropils encode specific visual features of a panorama. How downstream neurons integrate these features to control vital behaviors, like escape, is unclear [15]. In Drosophila, the timing of a single spike in the giant fiber (GF) descending neuron [16-18] determines whether a fly uses a short or long takeoff when escaping a looming predator [13]. We previously proposed that GF spike timing results from summation of two visual features whose detection is highly conserved across animals [19]: an object's subtended angular size and its angular velocity [5-8, 11, 20, 21]. We attributed velocity encoding to input from lobula columnar type 4 (LC4) visual projection neurons, but the size-encoding source remained unknown. Here, we show that lobula plate/lobula columnar, type 2 (LPLC2) visual projection neurons anatomically specialized to detect looming [22] provide the entire GF size component. We find LPLC2 neurons to be necessary for GF-mediated escape and show that LPLC2 and LC4 synapse directly onto the GF via reconstruction in a fly brain electron microscopy (EM) volume [23]. LPLC2 silencing eliminates the size component of the GF looming response in patch-clamp recordings, leaving only the velocity component. A model summing a linear function of angular velocity (provided by LC4) and a Gaussian function of angular size (provided by LPLC2) replicates GF looming response dynamics and predicts the peak response time. We thus present an identified circuit in which information from looming feature-detecting neurons is combined by a common post-synaptic target to determine behavioral output.

View Publication Page
Card Lab
05/09/24 | Neural Control of Naturalistic Behavior Choices
Asinof SK, Card GM
Annu Rev Neurosci. 2024 May 09:. doi: 10.1146/annurev-neuro-111020-094019

In the natural world, animals make decisions on an ongoing basis, continuously selecting which action to undertake next. In the lab, however, the neural bases of decision processes have mostly been studied using artificial trial structures. New experimental tools based on the genetic toolkit of model organisms now make it experimentally feasible to monitor and manipulate neural activity in small subsets of neurons during naturalistic behaviors. We thus propose a new approach to investigating decision processes, termed reverse neuroethology. In this approach, experimenters select animal models based on experimental accessibility and then utilize cutting-edge tools such as connectomes and genetically encoded reagents to analyze the flow of information through an animal's nervous system during naturalistic choice behaviors. We describe how the reverse neuroethology strategy has been applied to understand the neural underpinnings of innate, rapid decision making, with a focus on defensive behavioral choices in the vinegar fly Drosophila melanogaster.

View Publication Page
12/09/17 | Optogenetic dissection of descending behavioral control in Drosophila.
Cande J, Namiki S, Qiu J, Korff W, Card GM, Shaevitz JW, Stern DL, Berman GJ
eLife. 2018:e34275. doi: 10.7554/eLife.34275

In most animals, the brain makes behavioral decisions that are transmitted by descending neurons to the nerve cord circuitry that produces behaviors. In insects, only a few descending neurons have been associated with specific behaviors. To explore how descending neurons control an insect's movements, we developed a novel method to systematically assay the behavioral effects of activating individual neurons on freely behaving terrestrial D. melanogaster. We calculated a two-dimensional representation of the entire behavior space explored by these flies and we associated descending neurons with specific behaviors by identifying regions of this space that were visited with increased frequency during optogenetic activation. Applying this approach across a large collection of descending neurons, we found that (1) activation of most of the descending neurons drove stereotyped behaviors, (2) in many cases multiple descending neurons activated similar behaviors, and (3) optogenetically-activated behaviors were often dependent on the behavioral state prior to activation.

View Publication Page
06/09/23 | Organization of an Ascending Circuit that Conveys Flight Motor State
Han S. J. Cheong , Kaitlyn N. Boone , Marryn M. Bennett , Farzaan Salman , Jacob D. Ralston , Kaleb Hatch , Raven F. Allen , Alec M. Phelps , Andrew P. Cook , Jasper S. Phelps , Mert Erginkaya , Wei-Chung A. Lee , Gwyneth M. Card , Kevin C. Daly , Andrew M. Dacks
bioRxiv. 2023 Jun 09:. doi: 10.1101/2023.06.07.544074

Natural behaviors are a coordinated symphony of motor acts which drive self-induced or reafferent sensory activation. Single sensors only signal presence and magnitude of a sensory cue; they cannot disambiguate exafferent (externally-induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to make appropriate decisions and initiate adaptive behavioral outcomes. This is mediated by predictive motor signaling mechanisms, which emanate from motor control pathways to sensory processing pathways, but how predictive motor signaling circuits function at the cellular and synaptic level is poorly understood. We use a variety of techniques, including connectomics from both male and female electron microscopy volumes, transcriptomics, neuroanatomical, physiological and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs), which putatively provide predictive motor signals to several sensory and motor neuropil. Both AHN pairs receive input primarily from an overlapping population of descending neurons, many of which drive wing motor output. The two AHN pairs target almost exclusively non-overlapping downstream neural networks including those that process visual, auditory and mechanosensory information as well as networks coordinating wing, haltere, and leg motor output. These results support the conclusion that the AHN pairs multi-task, integrating a large amount of common input, then tile their output in the brain, providing predictive motor signals to non-overlapping sensory networks affecting motor control both directly and indirectly.

View Publication Page
Card Lab
02/13/24 | Organization of an ascending circuit that conveys flight motor state in Drosophila.
Cheong HS, Boone KN, Bennett MM, Salman F, Ralston JD, Hatch K, Allen RF, Phelps AM, Cook AP, Phelps JS, Erginkaya M, Lee WA, Card GM, Daly KC, Dacks AM
Current Biology. 2024 Feb 13:. doi: 10.1016/j.cub.2024.01.071

Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.

View Publication Page
Card Lab
02/01/08 | Performance trade-offs in the flight initiation of Drosophila.
Card G, Dickinson M
The Journal of Experimental Biology. 2008 Feb;211(Pt 3):341-53. doi: 10.1242/jeb.012682

The fruit fly Drosophila melanogaster performs at least two distinct types of flight initiation. One kind is a stereotyped escape response to a visual stimulus that is mediated by the hard-wired giant fiber neural pathway, and the other is a more variable ;voluntary’ response that can be performed without giant fiber activation. Because the simpler escape take-offs are apparently successful, it is unclear why the fly has multiple pathways to coordinate flight initiation. In this study we use high-speed videography to observe flight initiation in unrestrained wild-type flies and assess the flight performance of each of the two types of take-off. Three-dimensional kinematic analysis of take-off sequences indicates that wing use during the jumping phase of flight initiation is essential for stabilizing flight. During voluntary take-offs, early wing elevation leads to a slower and more stable take-off. In contrast, during visually elicited escapes, the wings are pulled down close to the body during take-off, resulting in tumbling flights in which the fly translates faster but also rotates rapidly about all three of its body axes. Additionally, we find evidence that the power delivered by the legs is substantially greater during visually elicited escapes than during voluntary take-offs. Thus, we find that the two types of Drosophila flight initiation result in different flight performances once the fly is airborne, and that these performances are distinguished by a trade-off between speed and stability.

View Publication Page
06/01/23 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
bioRxiv. 2023 Jun 01:. doi: 10.1101/2023.05.31.542897

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.

View Publication Page
09/12/18 | Speed dependent descending control of freezing behavior in Drosophila melanogaster.
Zacarias R, Namiki S, Card GM, Vasconcelos ML, Moita MA
Nature Communications. 2018 Sep 12;9(1):3697. doi: 10.1038/s41467-018-05875-1

The most fundamental choice an animal has to make when it detects a threat is whether to freeze, reducing its chances of being noticed, or to flee to safety. Here we show that Drosophila melanogaster exposed to looming stimuli in a confined arena either freeze or flee. The probability of freezing versus fleeing is modulated by the fly's walking speed at the time of threat, demonstrating that freeze/flee decisions depend on behavioral state. We describe a pair of descending neurons crucially implicated in freezing. Genetic silencing of DNp09 descending neurons disrupts freezing yet does not prevent fleeing. Optogenetic activation of both DNp09 neurons induces running and freezing in a state-dependent manner. Our findings establish walking speed as a key factor in defensive response choices and reveal a pair of descending neurons as a critical component in the circuitry mediating selection and execution of freezing or fleeing behaviors.

View Publication Page
Branson LabCard Lab
07/01/19 | State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila.
Ache JM, Namiki S, Lee A, Branson K, Card GM
Nature Neuroscience. 2019 Jul 01;22(7):1132-1139. doi: 10.1038/s41593-019-0413-4

An approaching predator and self-motion toward an object can generate similar looming patterns on the retina, but these situations demand different rapid responses. How central circuits flexibly process visual cues to activate appropriate, fast motor pathways remains unclear. Here we identify two descending neuron (DN) types that control landing and contribute to visuomotor flexibility in Drosophila. For each, silencing impairs visually evoked landing, activation drives landing, and spike rate determines leg extension amplitude. Critically, visual responses of both DNs are severely attenuated during non-flight periods, effectively decoupling visual stimuli from the landing motor pathway when landing is inappropriate. The flight-dependence mechanism differs between DN types. Octopamine exposure mimics flight effects in one, whereas the other probably receives neuronal feedback from flight motor circuits. Thus, this sensorimotor flexibility arises from distinct mechanisms for gating action-specific descending pathways, such that sensory and motor networks are coupled or decoupled according to the behavioral state.

View Publication Page