Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4112 Publications

Showing 851-860 of 4112 results
Menon Lab
12/11/17 | Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data.
Menon V
Briefings in Functional Genomics. 2017 Dec 11;17(4):240-45. doi: 10.1093/bfgp/elx044

Advances in single-cell RNA-sequencing technology have resulted in a wealth of studies aiming to identify transcriptomic cell types in various biological systems. There are multiple experimental approaches to isolate and profile single cells, which provide different levels of cellular and tissue coverage. In addition, multiple computational strategies have been proposed to identify putative cell types from single-cell data. From a data generation perspective, recent single-cell studies can be classified into two groups: those that distribute reads shallowly over large numbers of cells and those that distribute reads more deeply over a smaller cell population. Although there are advantages to both approaches in terms of cellular and tissue coverage, it is unclear whether different computational cell type identification methods are better suited to one or the other experimental paradigm. This study reviews three cell type clustering algorithms, each representing one of three broad approaches, and finds that PCA-based algorithms appear most suited to low read depth data sets, whereas gene clustering-based and biclustering algorithms perform better on high read depth data sets. In addition, highly related cell classes are better distinguished by higher-depth data, given the same total number of reads; however, simultaneous discovery of distinct and similar types is better served by lower-depth, higher cell number data. Overall, this study suggests that the depth of profiling should be determined by initial assumptions about the diversity of cells in the population, and that the selection of clustering algorithm(s) is subsequently based on the depth of profiling will allow for better identification of putative transcriptomic cell types.

View Publication Page
05/03/20 | Co-evolving wing spots and mating displays are genetically separable traits in Drosophila.
Massey JH, Rice GR, Firdaus A, Chen C, Yeh S, Stern DL, Wittkopp PJ
Evolution. 2020 May 03;74(6):1098-1111. doi: 10.1111/evo.13990

The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and D. gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior. This article is protected by copyright. All rights reserved.

View Publication Page
Tjian Lab
06/01/06 | Coactivator cross-talk specifies transcriptional output.
Marr MT, Isogai Y, Wright KJ, Tjian R
Genes & Development. 2006 Jun 1;20(11):1458-69. doi: 10.1073/pnas.1100640108

Cells often fine-tune gene expression at the level of transcription to generate the appropriate response to a given environmental or developmental stimulus. Both positive and negative influences on gene expression must be balanced to produce the correct level of mRNA synthesis. To this end, the cell uses several classes of regulatory coactivator complexes including two central players, TFIID and Mediator (MED), in potentiating activated transcription. Both of these complexes integrate activator signals and convey them to the basal apparatus. Interestingly, many promoters require both regulatory complexes, although at first glance they may seem to be redundant. Here we have used RNA interference (RNAi) in Drosophila cells to selectively deplete subunits of the MED and TFIID complexes to dissect the contribution of each of these complexes in modulating activated transcription. We exploited the robust response of the metallothionein genes to heavy metal as a model for transcriptional activation by analyzing direct factor recruitment in both heterogeneous cell populations and at the single-cell level. Intriguingly, we find that MED and TFIID interact functionally to modulate transcriptional response to metal. The metal response element-binding transcription factor-1 (MTF-1) recruits TFIID, which then binds promoter DNA, setting up a "checkpoint complex" for the initiation of transcription that is subsequently activated upon recruitment of the MED complex. The appropriate expression level of the endogenous metallothionein genes is achieved only when the activities of these two coactivators are balanced. Surprisingly, we find that the same activator (MTF-1) requires different coactivator subunits depending on the context of the core promoter. Finally, we find that the stability of multi-subunit coactivator complexes can be compromised by loss of a single subunit, underscoring the potential for combinatorial control of transcription activation.

View Publication Page
Tjian Lab
10/01/08 | Codependent activators direct myoblast-specific MyoD transcription.
Hu P, Geles KG, Paik J, DePinho RA, Tjian R
Developmental Cell. 2008 Oct;15(4):534-46. doi: 10.1073/pnas.1100640108

Although FoxO and Pax proteins represent two important families of transcription factors in determining cell fate, they had not been functionally or physically linked together in mediating regulation of a common target gene during normal cellular transcription programs. Here, we identify MyoD, a key regulator of myogenesis, as a direct target of FoxO3 and Pax3/7 in myoblasts. Our cell-based assays and in vitro studies reveal a tight codependent partnership between FoxO3 and Pax3/7 to coordinately recruit RNA polymerase II and form a preinitiation complex (PIC) to activate MyoD transcription in myoblasts. The role of FoxO3 in regulating muscle differentiation is confirmed in vivo by observed defects in muscle regeneration caused by MyoD downregulation in FoxO3 null mice. These data establish a mutual interdependence and functional link between two families of transcription activators serving as potential signaling sensors and regulators of cell fate commitment in directing tissue specific MyoD transcription.

View Publication Page
03/01/08 | Coding and non-coding polymorphisms in alcohol dehydrogenase alters protein expression and alcohol-associated erythema.
Pershing LK, Chen Y, Tkachuk AN, Rausch HL, Petelenz-Rubin K, Corlett JL, Hobbs MR
The Journal of Investigative Dermatology. 2008 Mar;128(3):616-27. doi: 10.1038/sj.jid.5701105

Ethanol (EtOH), isopropyl alcohol (IPA), and propylene glycol (PG) increase topical drug delivery, but are sometimes associated with erythema. A potential genetic basis for alcohol-associated erythema was investigated as the function of polymorphisms in coding and non-coding regions of class IB alcohol dehydrogenase (ADHIB) and evaluated for altered gene expression in vitro and metabolic activity in vivo via altered skin blood flow (Doppler velocimeter) and erythema (reflectance colorimeter a*) following topical challenge to 5 M EtOH, IPA, PG, and butanol (ButOH). Promoter polymorphisms G-887A and C-739T and exon G143A form eight ADHIB haplotypes with different frequencies in Caucasians vs Asians and exhibit variable gene expression and metabolic activity. Polymorphisms C-739T and G-887A independently alter gene expression, which is further increased by IPA and PG, but not EtOH or ButOH. EtOH and ButOH increase erythema as a function of skin blood flow. IPA increases skin blood flow without erythema and PG increased erythema with decreased skin blood flow, all as a function of ADHIB haplotype. PG-induced erythema was uniquely associated with tumor necrosis factor-alpha expression. Thus, erythema following alcohol exposure is alcohol type specific, has a pharmacogenetic basis related to ADHIB haplotype and can be functionally evaluated via Doppler velocimetry and reflectance colorimetry in vivo.

View Publication Page
09/01/11 | Coding of image feature descriptors for distributed rate-efficient visual correspondences.
Ahammad P, Yeo C, Ramchandran K
International Journal of Computer Vision. 2011 Sep;94:267-81. doi: 10.1007/s11263-011-0427-1

Establishing visual correspondences is a critical step in many computer vision tasks involving multiple views of a scene. In a dynamic environment and when cameras are mobile, visual correspondences need to be updated on a recurring basis. At the same time, the use of wireless links between camera motes imposes tight rate constraints. This combination of issues motivates us to consider the problem of establishing visual correspondences in a distributed fashion between cameras operating under rate constraints. We propose a solution based on constructing distance preserving hashes using binarized random projections. By exploiting the fact that descriptors of regions in correspondence are highly correlated, we propose a novel use of distributed source coding via linear codes on the binary hashes to more efficiently exchange feature descriptors for establishing correspondences across multiple camera views. A systematic approach is used to evaluate rate vs visual correspondences retrieval performance; under a stringent matching criterion, our proposed methods demonstrate superior performance to a baseline scheme employing transform coding of descriptors.

View Publication Page
Zuker Lab
02/07/03 | Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways.
Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ
Cell. 2003 Feb 7;112(3):293-301

Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.

View Publication Page
09/25/21 | Coding sequence-independent homology search identifies highly divergent homopteran putative effector gene family
Stern D, Han C
bioRxiv. 2021 Sep 25:. doi: https://doi.org/10.1101/2021.09.24.461719

Many genomes contain rapidly evolving and highly divergent genes whose homology to genes of known function often cannot be determined from sequence similarity alone. However, coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of rapidly evolving bicycle aphid effector genes identified many putative bicycle homologs in aphids, phylloxerids, and scale insects, whereas sequence similarity search methods yielded few homologs in most aphids and no homologs in phylloxerids and scale insects. Subsequent examination of sequence features and intron locations supported homology assignments. Differential expression studies of newly-identified bicycle homologs, together with prior proteomic studies, support the hypothesis that BICYCLE proteins act as plant effector proteins in many aphid species and perhaps also in phylloxerids and scale insects.

View Publication Page
Looger Lab
02/20/09 | Cofactor engineering of lactobacillus brevis alcohol dehydrogenase by computational design.
Ronnie Machielsen , Loren L. Looger , John Raedts , Sjoerd Dijkhuizen , Werner Hummel , Hans‐Georg Hennemann , Thomas Daussmann , John van der Oost
Engineering in Life Sciences. 2009 Feb 20;9(1):38-44. doi: 10.1002/elsc.200800046

The R‐specific alcohol dehydrogenase from Lactobacillus brevis (Lb‐ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnological applications. A drawback is its preference for NADP(H) as a cofactor, which is more expensive and labile than NAD(H). Structure‐based computational protein engineering was used to predict mutations to alter the cofactor specificity of Lb‐ADH. Mutations were introduced into Lb‐ADH and tested against the substrate acetophenone, with either NAD(H) or NADP(H) as cofactor. The mutant Arg38Pro showed fourfold increased activity with acetophenone and NAD(H) relative to the wild type. Both Arg38Pro and wild type exhibit a pH optimum of 5.5 with NAD(H) as cofactor, significantly more acidic than with NADP(H). These and related Lb‐ADH mutants may prove useful for the green synthesis of pharmaceutical precursors.

View Publication Page
09/19/17 | Cohesin can remain associated with chromosomes during DNA replication.
Rhodes JD, Haarhuis JH, Grimm JB, Rowland BD, Lavis LD, Nasmyth KA
Cell Reports. 2017 Sep 19;20(12):2749-55. doi: 10.1016/j.celrep.2017.08.092

To ensure disjunction to opposite poles during anaphase, sister chromatids must be held together following DNA replication. This is mediated by cohesin, which is thought to entrap sister DNAs inside a tripartite ring composed of its Smc and kleisin (Scc1) subunits. How such structures are created during S phase is poorly understood, in particular whether they are derived from complexes that had entrapped DNAs prior to replication. To address this, we used selective photobleaching to determine whether cohesin associated with chromatin in G1 persists in situ after replication. We developed a non-fluorescent HaloTag ligand to discriminate the fluorescence recovery signal from labeling of newly synthesized Halo-tagged Scc1 protein (pulse-chase or pcFRAP). In cells where cohesin turnover is inactivated by deletion of WAPL, Scc1 can remain associated with chromatin throughout S phase. These findings suggest that cohesion might be generated by cohesin that is already bound to un-replicated DNA.

View Publication Page