Filter
Associated Lab
- Aso Lab (2) Apply Aso Lab filter
- Betzig Lab (8) Apply Betzig Lab filter
- Card Lab (1) Apply Card Lab filter
- Clapham Lab (3) Apply Clapham Lab filter
- Fetter Lab (5) Apply Fetter Lab filter
- Funke Lab (6) Apply Funke Lab filter
- Harris Lab (4) Apply Harris Lab filter
- Hess Lab (79) Apply Hess Lab filter
- Jayaraman Lab (2) Apply Jayaraman Lab filter
- Lavis Lab (2) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Lippincott-Schwartz Lab (16) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (2) Apply Liu (Zhe) Lab filter
- Looger Lab (2) Apply Looger Lab filter
- Reiser Lab (1) Apply Reiser Lab filter
- Romani Lab (1) Apply Romani Lab filter
- Rubin Lab (6) Apply Rubin Lab filter
- Saalfeld Lab (10) Apply Saalfeld Lab filter
- Scheffer Lab (11) Apply Scheffer Lab filter
- Shroff Lab (1) Apply Shroff Lab filter
- Turner Lab (1) Apply Turner Lab filter
Associated Project Team
Publication Date
- 2025 (7) Apply 2025 filter
- 2024 (6) Apply 2024 filter
- 2023 (5) Apply 2023 filter
- 2022 (7) Apply 2022 filter
- 2021 (5) Apply 2021 filter
- 2020 (5) Apply 2020 filter
- 2019 (5) Apply 2019 filter
- 2018 (3) Apply 2018 filter
- 2017 (4) Apply 2017 filter
- 2016 (2) Apply 2016 filter
- 2015 (7) Apply 2015 filter
- 2014 (5) Apply 2014 filter
- 2013 (2) Apply 2013 filter
- 2012 (3) Apply 2012 filter
- 2011 (2) Apply 2011 filter
- 2010 (2) Apply 2010 filter
- 2009 (2) Apply 2009 filter
- 2008 (2) Apply 2008 filter
- 2007 (1) Apply 2007 filter
- 2006 (1) Apply 2006 filter
- 1994 (2) Apply 1994 filter
- 1988 (1) Apply 1988 filter
Type of Publication
79 Publications
Showing 1-10 of 79 resultsSex differences in behaviour exist across the animal kingdom, typically under strong genetic regulation. In Drosophila, previous work has shown that fruitless and doublesex transcription factors identify neurons driving sexually dimorphic behaviour. However, the organisation of dimorphic neurons into functional circuits remains unclear.We now present the connectome of the entire Drosophila male central nervous system. This contains 166,691 neurons spanning the brain and ventral nerve cord, fully proofread and comprehensively annotated including fruitless and doublesex expression and 11,691 cell types. By comparison with a previous female brain connectome, we provide the first comprehensive description of the differences between male and female brains to synaptic resolution. Of 7,319 cross-matched cell types in the central brain, 114 are dimorphic with an additional 262 male- and 69 female-specific (totalling 4.8% of neurons in males and 2.4% in females).This resource enables analysis of full sensory-to-motor circuits underlying complex behaviours as well as the impact of dimorphic elements. Sex-specific and dimorphic neurons are concentrated in higher brain centres while the sensory and motor periphery are largely isomorphic. Within higher centres, male-specific connections are organised into hotspots defined by male-specific neurons or the presence of male-specific arbours on neurons that are otherwise similar between sexes. Numerous circuit switches reroute sensory information to form conserved, antagonistic circuits controlling opposing behaviours.
Whether recovering after a gust of wind, or rapidly saccading away from an oncoming predator, fruit flies show remarkable aerial dexterity about their body roll axis. Here, we investigated the detailed wing kinematic changes during free-flight roll motion and probed the neuromuscular basis for such changes. Consistent with previous work, we observed that flies manipulated the stroke amplitude difference between their wings to control their roll angle. Here, we show that flies are capable of achieving such changes by altering the stroke amplitude of either or both of their wings. Further we found that during corrections flies can also take advantage of an aerodynamically significant change in the angle of attack of their uppermost wing. Curiously, these corrective wing changes cannot be eliminated when motor neurons hypothesized to be used during roll maneuvers (i1, i2, b1, b2, and b3) are individually inhibited. However, free-flight optogenetic manipulations and quasi-steady aerodynamic calculations show that each of these motor neurons individually can effect kinematic changes consistent with a roll correction. Combining this evidence with an analysis of haltere inputs found in the BANC connectome, we propose that the observed robustness could be the result of two sets of muscular redundancies that receive shared inputs from haltere sensory afferents: one set, containing b1 and b2, is able to increase the stroke amplitude of the lower wing; while the other set, containing i1, i2, and b3, is able to decrease the stroke amplitude and wing pitch angle of the upper wing. Because of the redundancy in the input sensory information and output wing motion in the muscles in each cluster, the fly is able to perform roll stability maneuvers even when one of the constituent motor neurons is inhibited. This framework proposes new ways fast aerial maneuverability can be implemented when dealing with the fly’s most unstable rotational degree of freedom.
Comprehensive mapping of neural connections is essential for understanding brain function. Existing automated methods for connectome reconstruction from high-resolution images of brain tissue introduce errors that require extensive and time-consuming manual correction, a critical bottleneck in the field. To address this, we developed PATHFINDER, an AI system that segments volumetric image data, identifies potential ways to assemble neuron fragments, and evaluates the plausibility of resulting shapes to reconstruct complete neurons. Using a dataset of all axons in an IBEAM-mSEM volume of mouse cortex, we show that PATHFINDER reduces the error rate in axon reconstruction by an order of magnitude over previous state of the art, leading to an improvement in proofreading throughput of up to 84× relative to prior estimates in the context of a whole mouse brain. By drastically reducing the manual effort required for analysis, this advance unlocks the potential for both large-scale connectome mapping and routine investigation of smaller volumes.
Vimentin intermediate filaments (VIFs) form complex, tightly packed networks; due to this density, traditional imaging approaches cannot discern single-filament behavior. To address this, we developed and validated a sparse vimentin-SunTag labeling strategy, enabling single-particle tracking of individual VIFs and providing a sensitive, unbiased, and quantitative method for measuring global VIF motility. Using this approach, we define the steady-state VIF motility rate, showing a constant ∼8% of VIFs undergo directed microtubule-based motion irrespective of subcellular location or local filament density. Significantly, our single-particle tracking approach revealed uncorrelated motion of individual VIFs within bundles, an observation seemingly at odds with conventional models of tightly cross-linked bundles. To address this, we acquired high-resolution focused ion beam scanning electron microscopy volumes of vitreously frozen cells and reconstructed three-dimensional VIF bundles, finding that they form only loosely organized, semi-coherent structures from which single VIFs frequently emerge to locally engage neighboring microtubules. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time. bioRxiv Preprint: https://doi.org/10.1101/2024.06.10.598346
The choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or intraflagellar transport yields neonatal hydrocephalus, at least in part due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Sonic Hedgehog (Shh) signaling. Interestingly, it is the non-canonical Shh signaling that represses Aqp1 and Atp1a2 expression by the Smoothened (Smo)/Gαi/cyclic AMP (cAMP) pathway. Choroid plexus multicilia exhibit unique ciliary ultrastructure, carrying features of both primary and motile cilia. Unlike most cilia that elongate during maturation, choroid plexus ciliary length decreases during development, causing a decline of Shh signaling intensity in the developing choroid plexus, a derepression of Aqp1 and Atp1a2, and, ultimately, increased CSF production. Hence, the developmental dynamics of choroid plexus multicilia dampens the Shh signaling intensity to promote CSF production. bioRxiv Preprint: https://www.biorxiv.org/content/early/2025/01/22/2025.01.21.633415
Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.
Primary cilia are sensory organelles present in many cell types, partaking in various signaling processes. Primary cilia of pancreatic beta cells play pivotal roles in paracrine signaling and their dysfunction is linked to diabetes. Yet, the structural basis for their functions is unclear. We present three-dimensional reconstructions of beta cell primary cilia by electron and expansion microscopy. These cilia are spatially confined within deep ciliary pockets or narrow spaces between cells, lack motility components and display an unstructured axoneme organization. Furthermore, we observe a plethora of beta cell cilia-cilia and cilia-cell interactions with other islet and non-islet cells. Most remarkably, we have identified and characterized axo-ciliary synapses between beta cell cilia and the cholinergic islet innervation. These findings highlight the beta cell cilia's role in islet connectivity, pointing at their function in integrating islet intrinsic and extrinsic signals and contribute to understanding their significance in health and diabetes.
The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three 'ectopic' photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general. Preprint: https://doi.org 10.1101/2024.09.30.615804
An automated ultra-microtome capable of sectioning thousands of ultrathin sections onto standard TEM slot grids was developed and used to section: a complete Drosophila melanogaster first-instar larva, three sections per grid, into 4,866 34-nm-thick sections with a cutting and pickup success rate of 99.74%; 30 microns of mouse cortex measuring roughly 400 um x 2000 um at 40 nm per slice; and a full adult Drosophila brain and ventral nerve column into 9,300 sections with a pickup success rate of 99.95%. The apparatus uses optical interferometers to monitor a reference distance between the cutting knife and multiple sample blocks. Cut sections are picked up from the knife-boat water surface while they are still anchored to the cutting knife. Blocks without embedded tissue are used to displace tissue-containing sections away from the knife edge so that the tissue regions end up in the grid slot instead of on the grid rim.
