Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Jan Funke Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4085 Publications

Showing 2421-2430 of 4085 results
Kainmueller Lab
07/20/09 | Multi-object segmentation of head bones.
Kainmueller D, Lamecker H, Seim H, Zachow S
MIDAS Journal. 2009 Jul 20:

We present a fully automatic method for 3D segmentation of the mandibular bone from CT data. The method includes an adaptation of statistical shape models of the mandible, the skull base and the midfacial bones, followed by a simultaneous graph-based optimization of adjacent deformable models. The adaptation of the models to the image data is performed according to a heuristic model of the typical intensity distribution in the vincinity of the bone boundary, with special focus on an accurate discrimination of adjacent bones in joint regions. An evaluation of our method based on 18 CT scans shows that a manual correction of the automatic segmentations is not necessary in approx. 60% of the axial slices that contain the mandible.

View Publication Page
Kainmueller Lab
01/01/09 | Multi-object segmentation with coupled deformable models.
Kainmueller D, Lamecker H, Zachow S
Annals of the British Machine Vision Association. 2009;2009(5):1-10

For biomechanical simulations, the segmentation of multiple adjacent anatomical struc- tures from medical image data is often required. If adjacent structures are barely dis- tinguishable in image data, in general automatic segmentation methods for single struc- tures do not yield sufficiently accurate results. To improve segmentation accuracy in these cases, knowledge about adjacent structures must be exploited. Optimal graph searching (graph cuts) based on deformable surface models allows for a simultaneous segmentation of multiple adjacent objects. However, this method requires a correspon- dence relation between vertices of adjacent surface meshes. Line segments, each con- taining two corresponding vertices, may then serve as shared displacement directions in the segmentation process. In this paper we propose a scheme for constructing a corre- spondence relation in adjacent regions of two arbitrary surfaces. This correspondence relation implies shared displacement directions that we apply for segmentation with de- formable surfaces. Here, overlap of the surfaces is guaranteed not to occur. We show correspondence relations for regions on a femoral head and acetabulum and other adja- cent structures, as well as an evaluation of segmentation results on 50 ct images of the hip joint. 

View Publication Page
11/17/20 | Multi-regional circuits underlying visually guided decision-making in Drosophila.
Cheong H, Siwanowicz I, Card GM
Current Opinion in Neurobiology. 2020 Nov 17;65:77-87. doi: 10.1016/j.conb.2020.10.010

Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.

View Publication Page
Card Lab
12/01/20 | Multi-regional circuits underlying visually guided decision-making in Drosophila.
Cheong HS, Siwanowicz I, Card GM
Current Opinion in Neurobiology. 2020 Dec 01;65:77-87. doi: 10.1016/j.conb.2020.10.010

Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.

View Publication Page
08/03/17 | Multi-scale approaches for high-speed imaging and analysis of large neural populations.
Friedrich J, Yang W, Soudry D, Mu Y, Ahrens MB, Yuste R, Peterka DS, Paninski L
PLoS Computational Biology. 2017 Aug 03;13(8):e1005685. doi: 10.1371/journal.pcbi.1005685

Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to "zoom out" by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.

View Publication Page
Menon Lab
11/24/11 | Multi-scale correlation structure of gene expression in the brain.
Hawrylycz M, Ng L, Page D, Morris J, Lau C, Faber S, Faber V, Sunkin S, Menon V, Lein E, Jones A
Neural networks : the official journal of the International Neural Network Society. 2011 Nov;24(9):933-42. doi: 10.1016/j.neunet.2011.06.012

The mammalian brain is best understood as a multi-scale hierarchical neural system, in the sense that connection and function occur on multiple scales from micro to macro. Modern genomic-scale expression profiling can provide insight into methodologies that elucidate this architecture. We present a methodology for understanding the relationship of gene expression and neuroanatomy based on correlation between gene expression profiles across tissue samples. A resulting tool, NeuroBlast, can identify networks of genes co-expressed within or across neuroanatomic structures. The method applies to any data modality that can be mapped with sufficient spatial resolution, and provides a computation technique to elucidate neuroanatomy via patterns of gene expression on spatial and temporal scales. In addition, from the perspective of spatial location, we discuss a complementary technique that identifies gene classes that contribute to defining anatomic patterns.

View Publication Page
Keller LabPavlopoulos Lab
03/29/18 | Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb.
Wolff C, Tinevez J, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A
eLife. 2018 Mar 29;7:e34410. doi: 10.7554/eLife.34410

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.

View Publication Page
03/25/25 | Multicilia dynamically transduce Sonic Hedgehog signaling to regulate choroid plexus functions
Mao S, Song R, Jin S, Pang S, Jovanovic A, Zimmerman A, Li P, Wu X, Wendland MF, Lin K, Chen W, Choksi SP, Chen G, Holtzman MJ, Reiter JF, Wan Y, Xuan Z, Xiang YK, Xu CS, Upadhyayula S, Hess HF, He L
Cell Reports. 2025 Mar 25:. doi: 10.1016/j.celrep.2025.115383

The choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or intraflagellar transport yields neonatal hydrocephalus, at least in part due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Sonic Hedgehog (Shh) signaling. Interestingly, it is the non-canonical Shh signaling that represses Aqp1 and Atp1a2 expression by the Smoothened (Smo)/Gαi/cyclic AMP (cAMP) pathway. Choroid plexus multicilia exhibit unique ciliary ultrastructure, carrying features of both primary and motile cilia. Unlike most cilia that elongate during maturation, choroid plexus ciliary length decreases during development, causing a decline of Shh signaling intensity in the developing choroid plexus, a derepression of Aqp1 and Atp1a2, and, ultimately, increased CSF production. Hence, the developmental dynamics of choroid plexus multicilia dampens the Shh signaling intensity to promote CSF production.

bioRxiv Preprint: https://www.biorxiv.org/content/early/2025/01/22/2025.01.21.633415

View Publication Page
01/31/17 | Multicut brings automated neurite segmentation closer to human performance.
Beier T, Pape C, Rahaman N, Prange T, Berg S, Bock DD, Cardona A, Knott GW, Plaza SM, Scheffer LK, Koethe U, Kreshuk A, Hamprecht FA
Nature Methods. 2017 Jan 31;14(2):101-102. doi: 10.1038/nmeth.4151
01/15/13 | Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.
Legant WR, Choi CK, Miller JS, Shao L, Gao L, Betzig E, Chen CS
Proceedings of the National Academy of Sciences of the United States of America. 2013 Jan 15;110(3):881-6. doi: 10.1073/pnas.1207997110

Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.

View Publication Page