Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

58 Publications

Showing 1-10 of 58 results
Your Criteria:
    Pastalkova Lab
    12/17/03 | A battery of tests for quantitative examination of idiothetic and allothetic place navigation modes in humans.
    Stepankova K, Pastalkova E, Kalova E, Kalina M, Bures J
    Behavioural Brain Research. 2003 Dec 17;147(1-2):95-105. doi: 10.1016/S0166-4328(03)00141-4

    Research into the neural mechanisms of place navigation in laboratory animals has led to the definition of allothetic and idiothetic navigation modes that can be examined by quantitative analysis of the generated tracks. In an attempt to use this approach in the study of human navigation behavior, 10 young subjects were examined in an enclosed arena (2.9 m in diameter, 3 m high) equipped with a computerized tracking system. Idiothetic navigation was studied in blindfolded subjects performing the following tasks-Simple Homing, Complex Homing and Idiothesis Supported by Floor-Related Signals. Allothetic navigation was examined in sighted subjects instructed to find in an empty arena the acoustically signaled unmarked goal region and later to retrieve its position using tasks (Natural Navigation, Cue-Controlled Navigation, Snapshot Memory, Map Reading) that evaluated different aspects of allothesis. The results indicate that allothetic navigation is more accurate than idiothetic, that the poor accuracy of idiothesis is due to angular rather than to distance errors, and that navigation performance is best when both allothetic and idiothetic modes contribute to the solution of the task. The proposed test battery may contribute to better understanding of the navigation disturbances accompanying various neurological disorders and to objective evaluation of the results of drug therapy and of rehabilitation procedures.

    View Publication Page
    02/15/03 | A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea).
    Miura T, Braendle C, Shingleton A, Sisk G, Kambhampati S, Stern DL
    J Exp Zool B Mol Dev Evol. 2003 Feb 15;295(1):59-81. doi: 10.1002/jez.b.3

    Aphids exhibit divergent modes of embryogenesis during the sexual and asexual phases of the life cycle. To explore how a single genome can give rise to these alternative developmental modes, we have initiated embryological studies of the pea aphid, Acyrthosiphon pisum. Here we present a detailed description of parthenogenetic, viviparous embryonic development in the pea aphid. We compare and contrast development of the parthenogenetic embryo with that of the embryo resulting from sexual reproduction. The primary difference between the embryos is the scale on which development occurs: early parthenogenetic development occurs in a volume approximately three orders of magnitude smaller than the sexual egg, largely because of the apparent absence of yolk in the parthenogenetic egg. This results in a drastically different duration of syncytial energid cleavage and, presumably, patterning processes in the two embryos must act at scales that differ by orders of magnitude. The eggs also develop on time scales that differ approximately by an order of magnitude and the timing of the embryonic movements, collectively called blastokinesis, have temporally shifted relative to growth of the embryo. In addition, the endosymbiotic bacteria are transferred from mother to embryo in different ways in the two embryos. Finally, the function of the serosa has diverged greatly in the two embryos: in the sexual egg the serosa deposits a thick cuticle that protects the egg, whereas the serosa of the parthenogenetic embryo is greatly reduced and its function is unclear. The pea aphid is a useful model system for examining how a single genome has evolved to allow divergent modes of development.

    View Publication Page
    Magee Lab
    01/01/03 | A prominent role for intrinsic neuronal properties in temporal coding.
    Magee JC
    Trends in Neurosciences. 2003 Jan;26(1):14-6. doi: 10.1002/cbic.201000254

    A recent report presents evidence that the exact timing of action potential output in rat hippocampal pyramidal neurons is similarly modulated during several diverse forms of behavior. These data suggest that it is, to a large degree, the intrinsic properties of the neurons themselves that produce this temporal coding of information. Thus, this report provides an outstanding example of the importance of single neuronal properties, even during complex behaviors.

    View Publication Page
    10/15/03 | A test bed for insect-inspired robotic control.
    Reiser MB, Dickinson MH
    Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 2003 Oct 15;361(1811):2267-85. doi: 10.1016/j.cub.2010.06.072

    Flying insects are remarkable examples of sophisticated sensory-motor control systems. Insects have solved the fundamental challenge facing the field of mobile robots: robust sensory-motor mapping. Control models based on insects can contribute much to the design of robotic control systems. We present our work on a preliminary robotic control system inspired by current behavioural and physiological models of the fruit fly, Drosophila melanogaster. We designed a five-degrees-of-freedom robotic system that serves as a novel simulation/mobile robot hybrid. This design has allowed us to implement a fly-inspired control system that uses visual and mechanosensory feedback. Our results suggest that a simple control scheme can yield surprisingly robust fly-like robotic behaviour.

    View Publication Page

    Axon pruning is widely used for the refinement of neural circuits in both vertebrates and invertebrates, and may also contribute to the pathogenesis of neurodegenerative diseases. However, little is known about the cellular and molecular mechanisms of axon pruning. We use the stereotyped pruning of gamma neurons of the Drosophila mushroom bodies (MB) during metamorphosis to investigate these mechanisms. Detailed time course analyses indicate that MB axon pruning is mediated by local degeneration rather than retraction and that the disruption of the microtubule cytoskeleton precedes axon pruning. In addition, multiple lines of genetic evidence demonstrate an intrinsic role of the ubiquitin-proteasome system in axon pruning; for example, loss-of-function mutations of the ubiquitin activating enzyme (E1) or proteasome subunits in MB neurons block axon pruning. Our findings suggest that some forms of axon pruning during development may share similarities with degeneration of axons in response to injury.

    View Publication Page
    04/01/03 | Body-size control: how an insect knows it has grown enough.
    Stern D
    Curr Biol. 2003 Apr 1;13(7):R267-9

    Insulin signaling controls organ growth and final body size in insects. Recent results have begun to clarify how insulin signaling drives organ growth to match nutrient levels, but have not yet elucidated how insulin signaling controls final body size.

    View Publication Page
    Tjian Lab
    02/01/03 | Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries.
    Ladurner AG, Inouye C, Jain R, Tjian R
    Molecular Cell. 2003 Feb;11(2):365-76. doi: 10.1073/pnas.1100640108

    Bromodomains bind acetylated histone H4 peptides in vitro. Since many chromatin remodeling complexes and the general transcription factor TFIID contain bromodomains, they may link histone acetylation to increased transcription. Here we show that yeast Bdf1 bromodomains recognize endogenous acetyl-histone H3/H4 as a mechanism for chromatin association in vivo. Surprisingly, deletion of BDF1 or a Bdf1 mutation that abolishes histone binding leads to transcriptional downregulation of genes located at heterochromatin-euchromatin boundaries. Wild-type Bdf1 protein imposes a physical barrier to the spreading of telomere- and mating-locus-proximal SIR proteins. Biochemical experiments indicate that Bdf1 competes with the Sir2 deacetylase for binding to acetylated histone H4. These data suggest an active role for Bdf1 in euchromatin maintenance and antisilencing through a histone tail-encoded boundary function.

    View Publication Page
    03/27/03 | Calculating free energies for diffusion in tight-fitting zeolite-guest systems: Local normal-mode Monte Carlo
    Srinivas C. Turaga , Scott M. Auerbach
    Journal of Chemical Physics. 2003;118(6512):. doi: 10.1063/1.1558033

    We present an efficient Monte Carlo algorithm for simulating diffusion in tight-fitting host–guest systems, based on using zeolitenormal modes. Computational efficiency is gained by sampling framework distortions using normal-mode coordinates, and by exploiting the fact that zeolite distortion energies are well approximated by harmonic estimates. Additional savings are obtained by performing local normal-mode analysis, i.e., only including the motions of zeolite atoms close to the jumping molecule, hence focusing the calculation on zeolite distortions relevant to guest diffusion. We performed normal-mode analysis on various silicalite structures to demonstrate the accuracy of the harmonic approximation. We computed free energy surfaces for benzene in silicalite, finding excellent agreement with previous theoretical studies. Our method is found to be orders-of-magnitude faster than comparable Monte Carlo calculations that use conventional forcefields to quantify zeolite distortion energies. For tight-fitting guests, the efficiency of our new method allows flexible-lattice simulations to converge in less CPU time than that required for fixed-lattice simulations, because of the increased likelihood of jumping through a flexible lattice.

    View Publication Page
    Zuker Lab
    02/07/03 | Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ
    Cell. 2003 Feb 7;112(3):293-301

    Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.

    View Publication Page
    Tjian Lab
    08/15/03 | Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway.
    Puig O, Marr MT, Ruhf ML, Tjian R
    Genes & Development. 2003 Aug 15;17(16):2006-20. doi: 10.1073/pnas.1100640108

    The Drosophila insulin receptor (dInR) regulates cell growth and proliferation through the dPI3K/dAkt pathway, which is conserved in metazoan organisms. Here we report the identification and functional characterization of the Drosophila forkhead-related transcription factor dFOXO, a key component of the insulin signaling cascade. dFOXO is phosphorylated by dAkt upon insulin treatment, leading to cytoplasmic retention and inhibition of its transcriptional activity. Mutant dFOXO lacking dAkt phosphorylation sites no longer responds to insulin inhibition, remains in the nucleus, and is constitutively active. dFOXO activation in S2 cells induces growth arrest and activates two key players of the dInR/dPI3K/dAkt pathway: the translational regulator d4EBP and the dInR itself. Induction of d4EBP likely leads to growth inhibition by dFOXO, whereas activation of dInR provides a novel transcriptionally induced feedback control mechanism. Targeted expression of dFOXO in fly tissues regulates organ size by specifying cell number with no effect on cell size. Our results establish dFOXO as a key transcriptional regulator of the insulin pathway that modulates growth and proliferation.

    View Publication Page