Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

62 Publications

Showing 11-20 of 62 results
Your Criteria:
    Grigorieff Lab
    03/07/18 | cisTEM, User-friendly software for single-particle image processing.
    Grant T, Rohou A, Grigorieff N
    eLife. 2018 Mar 07;7:. doi: 10.7554/eLife.35383

    We have developed new open-source software calledTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging.TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200k - 300k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments.TEM is available for download from cistem.org.

    View Publication Page
    Grigorieff Lab
    03/01/17 | Conformational states of a soluble, uncleaved HIV-1 envelope trimer.
    Liu Y, Pan J, Cai Y, Grigorieff N, Harrison SC, Chen B
    Journal of Virology. 2017 Mar 01;91(10):e00175-17. doi: 10.1128/JVI.00175-17

    HIV-1 envelope spike [Env; trimeric (gp160)3, cleaved to (gp120/gp41)3] induces membrane fusion, leading to viral entry. It is also the viral component targeted by neutralizing antibodies. Vaccine development requires production, in quantities suitable for clinical studies, of a recombinant form that resembles functional Env. HIV-1 gp140 trimers - the uncleaved ectodomains of (gp160)3 - from a few selected viral isolates adopt a compact conformation with many antigenic properties of native Env spikes. One is currently being evaluated in a clinical trial. We report here low-resolution (20Å) cryoEM (electron cryomicroscopy) structures of this gp140 trimer, which adopts two principal conformations, one closed and the other slightly open. The former is indistinguishable at this resolution from those adopted by a stabilized, cleaved trimer (SOSIP) or by a membrane-bound Env trimer with truncated cytoplasmic tail (EnvΔCT). The latter conformation is closer to a partially open Env trimer than to the fully open conformation induced by CD4. These results show that a stable, uncleaved HIV-1 gp140 trimer has a compact structure close to that of native Env.IMPORTANCE Development of any HIV vaccine with a protein component (either prime or boost) requires production of a recombinant form to mimic the trimeric, functional HIV-1 envelope spike, in quantities suitable for clinical studies. Our understanding of the envelope structure has depended in part on a cleaved, soluble trimer, known as SOSIP.664, stabilized by several modifications including an engineered disulfide. This construct, difficult to produce in large quantities, has yet to induce better antibody responses than other envelope-based immunogens, even in animal models. The uncleaved ectodomain of the envelope protein, called gp140, has also been made as a soluble form to mimic the native Env present on the virion surface. Most HIV-1 gp140 preparations are not stable, however, and of inhomogeneous conformation. The results presented here show that gp140 preparations from suitable isolates can adopt a compact, native-like structure, supporting its use as a vaccine candidate.

    View Publication Page
    Grigorieff Lab
    03/07/19 | Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids.
    Liberta F, Loerch S, Rennegarbe M, Schierhorn A, Westermark P, Westermark GT, Hazenberg BP, Grigorieff N, Fändrich M, Schmidt M
    Nature Communications. 2019 Mar 07;10(1):1104. doi: 10.1038/s41467-019-09033-z

    Systemic AA amyloidosis is a worldwide occurring protein misfolding disease of humans and animals. It arises from the formation of amyloid fibrils from the acute phase protein serum amyloid A. Here, we report the purification and electron cryo-microscopy analysis of amyloid fibrils from a mouse and a human patient with systemic AA amyloidosis. The obtained resolutions are 3.0 Å and 2.7 Å for the murine and human fibril, respectively. The two fibrils differ in fundamental properties, such as presence of right-hand or left-hand twisted cross-β sheets and overall fold of the fibril proteins. Yet, both proteins adopt highly similar β-arch conformations within the N-terminal ~21 residues. Our data demonstrate the importance of the fibril protein N-terminus for the stability of the analyzed amyloid fibril morphologies and suggest strategies of combating this disease by interfering with specific fibril polymorphs.

    View Publication Page
    Grigorieff Lab
    05/16/16 | Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril.
    Schmidt A, Annamalai K, Schmidt M, Grigorieff N, Fändrich M
    Proceedings of the National Academy of Sciences of the United States of America. 2016 May 16;113(22):6200-5. doi: 10.1073/pnas.1522282113

    Amyloid fibrils are proteinaceous aggregates associated with diseases in humans and animals. The fibrils are defined by intermolecular interactions between the fibril-forming polypeptide chains, but it has so far remained difficult to reveal the assembly of the peptide subunits in a full-scale fibril. Using electron cryomicroscopy (cryo-EM), we present a reconstruction of a fibril formed from the pathogenic core of an amyloidogenic immunoglobulin (Ig) light chain. The fibril density shows a lattice-like assembly of face-to-face packed peptide dimers that corresponds to the structure of steric zippers in peptide crystals. Interpretation of the density map with a molecular model enabled us to identify the intermolecular interactions between the peptides and rationalize the hierarchical structure of the fibril based on simple chemical principles.

    View Publication Page
    Grigorieff Lab
    05/12/17 | CryoEM structure of an influenza virus receptor-binding site antibody-antigen interface.
    Liu Y, Pan J, Jenni S, Raymond DD, Caradonna T, Do KT, Schmidt AG, Harrison SC, Grigorieff N
    Journal of Molecular Biology. 2017 May 12;429(12):1829-39. doi: 10.1016/j.jmb.2017.05.011

    Structure-based vaccine design depends on extensive structural analyses of antigen-antibody complexes. Single-particle electron cryomicroscopy (cryoEM) can circumvent some of the problems of x-ray crystallography as a pipeline for obtaining the required structures. We have examined the potential of single-particle cryoEM for determining the structure of influenza-virus hemagglutinin (HA):single-chain Fv (scFv) complexes, by studying a complex we failed to crystallize in pursuing an extended project of the human immune response to influenza vaccines. The result shows that a combination of cryoEM and molecular modeling can yield details of the antigen:antibody interface, although small variation in the twist of the rod-like HA trimer limited the overall resolution to about 4.5Å. Comparison of principal 3D classes suggests ways to modify the HA trimer to overcome this limitation. A closely related antibody from the same donor did yield crystals when bound with the same HA, giving us an independent validation of the cryoEM results The two structures also augment our understanding of receptor-binding site recognition by antibodies that neutralize a wide range of influenza-virus variants.

    View Publication Page
    Grigorieff Lab
    08/13/15 | CTFFIND4: Fast and accurate defocus estimation from electron micrographs.
    Rohou A, Grigorieff N
    Journal of Structural Biology. 2015 Aug 13;192(2):216-21. doi: 10.1016/j.jsb.2015.08.008

    CTFFIND is a widely-used program for the estimation of objective lens defocus parameters from transmission electron micrographs. Defocus parameters are estimated by fitting a model of the microscope's contrast transfer function (CTF) to an image's amplitude spectrum. Here we describe modifications to the algorithm which make it significantly faster and more suitable for use with images collected using modern technologies such as dose fractionation and phase plates. We show that this new version preserves the accuracy of the original algorithm while allowing for higher throughput. We also describe a measure of the quality of the fit as a function of spatial frequency and suggest this can be used to define the highest resolution at which CTF oscillations were successfully modeled.

    View Publication Page
    Grigorieff Lab
    02/19/13 | Direct detection pays off for electron cryo-microscopy.
    Grigorieff N
    eLife. 2013 Feb 19;2:e00573. doi: 10.7554/eLife.00573

    Improved electron detectors and image-processing techniques will allow the structures of macromolecules to be determined from tens of thousands of single-particle cryo-EM images, rather than the hundreds of thousands needed previously.

    View Publication Page
    Grigorieff Lab
    06/01/17 | Ensemble cryo-EM elucidates the mechanism of translation fidelity.
    Loveland AB, Demo G, Grigorieff N, Korostelev AA
    Nature. 2017 Jun 01;546(7656):113-117. doi: 10.1038/nature22397

    Gene translation depends on accurate decoding of mRNA, the structural mechanism of which remains poorly understood. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by elongation factor Tu (EF-Tu). Here we present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the aminoacyl-tRNA-binding site (A site) of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-centre nucleotide G530 stabilizes the cognate codon-anticodon helix, initiating step-wise 'latching' of the decoding centre. The resulting closure of the 30S subunit docks EF-Tu at the sarcin-ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and enabling accommodation of the aminoacyl-tRNA. By contrast, near-cognate complexes fail to induce the G530 latch, thus favouring open 30S pre-accommodation intermediates with inactive EF-Tu. This work reveals long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNAs that elucidate the mechanism of accurate decoding.

    View Publication Page
    Grigorieff Lab
    05/09/16 | Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome.
    Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA
    eLife. 2016 May 9;5:. doi: 10.7554/eLife.14874

    Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.

    View Publication Page
    Grigorieff Lab
    08/28/15 | Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0.
    Chiu P, Li X, Li Z, Beckett B, Brilot AF, Grigorieff N, Agard DA, Cheng Y, Walz T
    Journal of Structural Biology. 2015 Aug 28:. doi: 10.1016/j.jsb.2015.08.015

    The K2 Summit camera was initially the only commercially available direct electron detection camera that was optimized for high-speed counting of primary electrons and was also the only one that implemented centroiding so that the resolution of the camera can be extended beyond the Nyquist limit set by the physical pixel size. In this study, we used well-characterized two-dimensional crystals of the membrane protein aquaporin-0 to characterize the performance of the camera below and beyond the physical Nyquist limit and to measure the influence of electron dose rate on image amplitudes and phases.

    View Publication Page