Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4 Publications

Showing 1-4 of 4 results
Your Criteria:
    08/01/05 | A major role for zygotic hunchback in patterning the Nasonia embryo.
    Pultz MA, Westendorf L, Gale SD, Hawkins K, Lynch J, Pitt JN, Reeves NL, Yao JC, Small S, Desplan C, Leaf DS
    Development . 2005 Aug;132(16):3705-15. doi: 10.1242/dev.01939

    Developmental genetic analysis has shown that embryos of the parasitoid wasp Nasonia vitripennis depend more on zygotic gene products to direct axial patterning than do Drosophila embryos. In Drosophila, anterior axial patterning is largely established by bicoid, a rapidly evolving maternal-effect gene, working with hunchback, which is expressed both maternally and zygotically. Here, we focus on a comparative analysis of Nasonia hunchback function and expression. We find that a lesion in Nasonia hunchback is responsible for the severe zygotic headless mutant phenotype, in which most head structures and the thorax are deleted, as are the three most posterior abdominal segments. This defines a major role for zygotic Nasonia hunchback in anterior patterning, more extensive than the functions described for hunchback in Drosophila or Tribolium. Despite the major zygotic role of Nasonia hunchback, we find that it is strongly expressed maternally, as well as zygotically. Nasonia Hunchback embryonic expression appears to be generally conserved; however, the mRNA expression differs from that of Drosophila hunchback in the early blastoderm. We also find that the maternal hunchback message decays at an earlier developmental stage in Nasonia than in Drosophila, which could reduce the relative influence of maternal products in Nasonia embryos. Finally, we extend the comparisons of Nasonia and Drosophila hunchback mutant phenotypes, and propose that the more severe Nasonia hunchback mutant phenotype may be a consequence of differences in functionally overlapping regulatory circuitry.

    View Publication Page
    08/01/05 | Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons.
    Williams DW, Truman JW
    Development. 2005 Aug;132(16):3631-42. doi: 10.1242/dev.01928

    Regressive events that refine exuberant or inaccurate connections are critical in neuronal development. We used multi-photon, time-lapse imaging to examine how dendrites of Drosophila dendritic arborizing (da) sensory neurons are eliminated during early metamorphosis, and how intrinsic and extrinsic cellular mechanisms control this deconstruction. Removal of the larval dendritic arbor involves two mechanisms: local degeneration and branch retraction. In local degeneration, major branch severing events entail focal disruption of the microtubule cytoskeleton, followed by thinning of the disrupted region, severing and fragmentation. Retraction was observed at distal tips of branches and in proximal stumps after severing events. The pruning program of da neuron dendrites is steroid induced; cell-autonomous dominant-negative inhibition of steroid action blocks local degeneration, although retraction events still occur. Our data suggest that steroid-induced changes in the epidermis may contribute to dendritic retraction. Finally, we find that phagocytic blood cells not only engulf neuronal debris but also attack and sever intact branches that show signs of destabilization.

    View Publication Page
    08/01/05 | Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.
    Peng H, Long F, Ding C
    IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005 Aug;27(8):1226-38. doi: 10.1007/s12021-010-9090-x

    Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

    View Publication Page
    08/11/05 | The hangover gene defines a stress pathway required for ethanol tolerance development.
    Scholz H, Franz M, Heberlein U
    Nature. 2005 Aug 11;436(7052):845-7. doi: 10.1038/nature03864

    Repeated alcohol consumption leads to the development of tolerance, simply defined as an acquired resistance to the physiological and behavioural effects of the drug. This tolerance allows increased alcohol consumption, which over time leads to physical dependence and possibly addiction. Previous studies have shown that Drosophila develop ethanol tolerance, with kinetics of acquisition and dissipation that mimic those seen in mammals. This tolerance requires the catecholamine octopamine, the functional analogue of mammalian noradrenaline. Here we describe a new gene, hangover, which is required for normal development of ethanol tolerance. hangover flies are also defective in responses to environmental stressors, such as heat and the free-radical-generating agent paraquat. Using genetic epistasis tests, we show that ethanol tolerance in Drosophila relies on two distinct molecular pathways: a cellular stress pathway defined by hangover, and a parallel pathway requiring octopamine. hangover encodes a large nuclear zinc-finger protein, suggesting a role in nucleic acid binding. There is growing recognition that stress, at both the cellular and systemic levels, contributes to drug- and addiction-related behaviours in mammals. Our studies suggest that this role may be conserved across evolution.

    View Publication Page