Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

12 Publications

Showing 11-12 of 12 results
Your Criteria:
    09/13/10 | Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing.
    Vaziri A, Shank CV
    Optics Express. 2010 Sep 13;18(19):19645-55. doi: 10.1364/OE.18.019645

    The need for optical sectioning in bio-imaging has amongst others led to the development of the two-photon scanning microscopy. However, this comes with some intrinsic fundamental limitations in the temporal domain as the focused spot has to be scanned mechanically in the sample plane. Hence for a large number of biological applications where imaging speed is a limiting factor, it would be significantly advantageous to generate widefield excitations with an optical sectioning comparable to the two-photon scanning microscopy. Recently by using the technique of temporal focusing it was shown that high axial resolution widefield excitation can be generated in picosecond time scales without any mechanical moving parts. However the achievable axial resolution is still well above that of a two-photon scanning microscope. Here we demonstrate a new ultrafast widefield two-photon imaging technique termed Multifocal Temporal Focusing (MUTEF) which relies on the generation of a set of diffraction limited beams produced by an Echelle grating that scan across a second tilted diffraction grating in picosecond time scale, generating a widefield excitation area with an axial resolution comparable to a two-photon scanning microscope. Using this method we have shown widefield two-photon imaging on fixed biological samples with an axial sectioning with a FWHM of  0.85 μm.

    View Publication Page
    Chklovskii Lab
    09/23/10 | Ultrastructural analysis of hippocampal neuropil from the connectomics perspective.
    Mishchenko Y, Hu T, Spacek J, Mendenhall J, Harris KM, Chklovskii DB
    Neuron. 2010 Sep 23;67(6):1009-20. doi: 10.1371/journal.pcbi.1001066

    Complete reconstructions of vertebrate neuronal circuits on the synaptic level require new approaches. Here, serial section transmission electron microscopy was automated to densely reconstruct four volumes, totaling 670 μm(3), from the rat hippocampus as proving grounds to determine when axo-dendritic proximities predict synapses. First, in contrast with Peters’ rule, the density of axons within reach of dendritic spines did not predict synaptic density along dendrites because the fraction of axons making synapses was variable. Second, an axo-dendritic touch did not predict a synapse; nevertheless, the density of synapses along a hippocampal dendrite appeared to be a universal fraction, 0.2, of the density of touches. Finally, the largest touch between an axonal bouton and spine indicated the site of actual synapses with about 80% precision but would miss about half of all synapses. Thus, it will be difficult to predict synaptic connectivity using data sets missing ultrastructural details that distinguish between axo-dendritic touches and bona fide synapses.

    View Publication Page