Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

25 Publications

Showing 1-10 of 25 results
Your Criteria:
    Druckmann Lab
    09/17/12 | A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis.
    Druckmann S, Hill S, Schürmann F, Markram H, Segev I
    Cerebral Cortex. 2012 Sep 17;23(12):2994-3006. doi: 10.1093/cercor/bhs290

    Although the diversity of cortical interneuron electrical properties is well recognized, the number of distinct electrical types (e-types) is still a matter of debate. Recently, descriptions of interneuron variability were standardized by multiple laboratories on the basis of a subjective classification scheme as set out by the Petilla convention (Petilla Interneuron Nomenclature Group, PING). Here, we present a quantitative, statistical analysis of a database of nearly five hundred neurons manually annotated according to the PING nomenclature. For each cell, 38 features were extracted from responses to suprathreshold current stimuli and statistically analyzed to examine whether cortical interneurons subdivide into e-types. We showed that the partitioning into different e-types is indeed the major component of data variability. The analysis suggests refining the PING e-type classification to be hierarchical, whereby most variability is first captured within a coarse subpartition, and then subsequently divided into finer subpartitions. The coarse partition matches the well-known partitioning of interneurons into fast spiking and adapting cells. Finer subpartitions match the burst, continuous, and delayed subtypes. Additionally, our analysis enabled the ranking of features according to their ability to differentiate among e-types. We showed that our quantitative e-type assignment is more than 90% accurate and manages to catch several human errors.

    View Publication Page
    Druckmann Lab
    01/01/12 | A mechanistic model of early sensory processing based on subtracting sparse representations.
    Druckmann S, Hu T, Chklovskii D
    Advances in Neural Information Processing Systems. 2012;25:1979-87

    Early stages of sensory systems face the challenge of compressing information from numerous receptors onto a much smaller number of projection neurons, a so called communication bottleneck. To make more efficient use of limited bandwidth, compression may be achieved using predictive coding, whereby predictable, or redundant, components of the stimulus are removed. In the case of the retina, Srinivasan et al. (1982) suggested that feedforward inhibitory connections subtracting a linear prediction generated from nearby receptors implement such compression, resulting in biphasic center-surround receptive fields. However, feedback inhibitory circuits are common in early sensory circuits and furthermore their dynamics may be nonlinear. Can such circuits implement predictive coding as well? Here, solving the transient dynamics of nonlinear reciprocal feedback circuits through analogy to a signal-processing algorithm called linearized Bregman iteration we show that nonlinear predictive coding can be implemented in an inhibitory feedback circuit. In response to a step stimulus, interneuron activity in time constructs progressively less sparse but more accurate representations of the stimulus, a temporally evolving prediction. This analysis provides a powerful theoretical framework to interpret and understand the dynamics of early sensory processing in a variety of physiological experiments and yields novel predictions regarding the relation between activity and stimulus statistics.

    View Publication Page
    Druckmann Lab
    11/01/07 | A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data.
    Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I
    Frontiers in Neuroscience. 2007 Nov;1(1):7-18. doi: 10.3389/neuro.01.1.1.001.2007

    We present a novel framework for automatically constraining parameters of compartmental models of neurons, given a large set of experimentally measured responses of these neurons. In experiments, intrinsic noise gives rise to a large variability (e.g., in firing pattern) in the voltage responses to repetitions of the exact same input. Thus, the common approach of fitting models by attempting to perfectly replicate, point by point, a single chosen trace out of the spectrum of variable responses does not seem to do justice to the data. In addition, finding a single error function that faithfully characterizes the distance between two spiking traces is not a trivial pursuit. To address these issues, one can adopt a multiple objective optimization approach that allows the use of several error functions jointly. When more than one error function is available, the comparison between experimental voltage traces and model response can be performed on the basis of individual features of interest (e.g., spike rate, spike width). Each feature can be compared between model and experimental mean, in units of its experimental variability, thereby incorporating into the fitting this variability. We demonstrate the success of this approach, when used in conjunction with genetic algorithm optimization, in generating an excellent fit between model behavior and the firing pattern of two distinct electrical classes of cortical interneurons, accommodating and fast-spiking. We argue that the multiple, diverse models generated by this method could serve as the building blocks for the realistic simulation of large neuronal networks.

    View Publication Page
    Gonen LabDruckmann Lab
    07/22/16 | Accurate design of megadalton-scale two-component icosahedral protein complexes.
    Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D
    Science (New York, N.Y.). 2016 Jul 22;353(6297):389-94. doi: 10.1126/science.aaf8818

    Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.

    View Publication Page
    Druckmann LabMagee Lab
    10/22/18 | Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior.
    Ranganathan GN, Apostolides PF, Harnett MT, Xu N, Druckmann S, Magee JC
    Nature Neuroscience. 2018 Oct 22;21(11):1583-90. doi: 10.1038/s41593-018-0254-6

    Animals strategically scan the environment to form an accurate perception of their surroundings. Here we investigated the neuronal representations that mediate this behavior. Ca imaging and selective optogenetic manipulation during an active sensing task reveals that layer 5 pyramidal neurons in the vibrissae cortex produce a diverse and distributed representation that is required for mice to adapt their whisking motor strategy to changing sensory cues. The optogenetic perturbation degraded single-neuron selectivity and network population encoding through a selective inhibition of active dendritic integration. Together the data indicate that active dendritic integration in pyramidal neurons produces a nonlinearly mixed network representation of joint sensorimotor parameters that is used to transform sensory information into motor commands during adaptive behavior. The prevalence of the layer 5 cortical circuit motif suggests that this is a general circuit computation.

    View Publication Page
    Svoboda LabDruckmann LabScientific Computing Software
    01/15/19 | An orderly single-trial organization of population dynamics in premotor cortex predicts behavioral variability.
    Wei Z, Inagaki H, Li N, Svoboda K, Druckmann S
    Nature Communications. 2019 Jan 15;10(1):216. doi: 10.1038/s41467-018-08141-6

    Animals are not simple input-output machines. Their responses to even very similar stimuli are variable. A key, long-standing question in neuroscience is to understand the neural correlates of such behavioral variability. To reveal these correlates, behavior and neural population activity must be related to one another on single trials. Such analysis is challenging due to the dynamical nature of brain function (e.g., in decision making), heterogeneity across neurons and limited sampling of the relevant neural population. By analyzing population recordings from mouse frontal cortex in perceptual decision-making tasks, we show that an analysis approach tailored to the coarse grain features of the dynamics is able to reveal previously unrecognized structure in the organization of population activity. This structure is similar on error and correct trials, suggesting dynamics that may be constrained by the underlying circuitry, is able to predict multiple aspects of behavioral variability and reveals long time-scale modulation of population activity.

    View Publication Page
    05/22/17 | Angular velocity integration in a fly heading circuit.
    Turner-Evans D, Wegener S, Rouault H, Franconville R, Wolff T, Seelig JD, Druckmann S, Jayaraman V
    eLife. 2017 May 22;6:. doi: 10.7554/eLife.23496

    Many animals maintain an internal representation of their heading as they move through their surroundings. Such a compass representation was recently discovered in a neural population in the Drosophila melanogaster central complex, a brain region implicated in spatial navigation. Here, we use two-photon calcium imaging and electrophysiology in head-fixed walking flies to identify a different neural population that conjunctively encodes heading and angular velocity, and is excited selectively by turns in either the clockwise or counterclockwise direction. We show how these mirror-symmetric turn responses combine with the neurons' connectivity to the compass neurons to create an elegant mechanism for updating the fly's heading representation when the animal turns in darkness. This mechanism, which employs recurrent loops with an angular shift, bears a resemblance to those proposed in theoretical models for rodent head direction cells. Our results provide a striking example of structure matching function for a broadly relevant computation.

    View Publication Page
    Druckmann Lab
    07/01/15 | Confidence estimation as a stochastic process in a neurodynamical system of decision making.
    Wei Z, Wang X
    Journal of Neurophysiology. 2015 Jul;114(1):99-113. doi: 10.1152/jn.00793.2014

    Evaluation of confidence about one's knowledge is key to the brain's ability to monitor cognition. To investigate the neural mechanism of confidence assessment, we examined a biologically realistic spiking network model and found that it reproduced salient behavioral observations and single-neuron activity data from a monkey experiment designed to study confidence about a decision under uncertainty. Interestingly, the model predicts that changes of mind can occur in a mnemonic delay when confidence is low; the probability of changes of mind increases (decreases) with task difficulty in correct (error) trials. Furthermore, a so-called "hard-easy effect" observed in humans naturally emerges, i.e., behavior shows underconfidence (underestimation of correct rate) for easy or moderately difficult tasks and overconfidence (overestimation of correct rate) for very difficult tasks. Importantly, in the model, confidence is computed using a simple neural signal in individual trials, without explicit representation of probability functions. Therefore, even a concept of metacognition can be explained by sampling a stochastic neural activity pattern.

    View Publication Page
    Gonen LabDruckmann Lab
    06/15/16 | Design of a hyperstable 60-subunit protein icosahedron.
    Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK, Nattermann U, Xu C, Huang P, Ravichandran R, Yi S, Davis TN, Gonen T, King NP, Baker D
    Nature. 2016 Jun 15:. doi: 10.1038/nature18010

    The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent 'standard candles' for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology.

    View Publication Page
    06/16/15 | Dynamical feature extraction at the sensory periphery guides chemotaxis.
    Schulze A, Gomez-Marin A, Rajendran VG, Lott G, Musy M, Ahammad P, Deogade A, Sharpe J, Riedl J, Jarriault D, Trautman ET, Werner C, Venkadesan M, Druckmann S, Jayaraman V, Louis M
    eLife. 2015 Jun 16;4:. doi: 10.7554/eLife.06694

    Behavioral strategies employed for chemotaxis have been described across phyla, but the sensorimotor basis of this phenomenon has seldom been studied in naturalistic contexts. Here, we examine how signals experienced during free olfactory behaviors are processed by first-order olfactory sensory neurons (OSNs) of the Drosophila larva. We find that OSNs can act as differentiators that transiently normalize stimulus intensity-a property potentially derived from a combination of integral feedback and feed-forward regulation of olfactory transduction. In olfactory virtual reality experiments, we report that high activity levels of the OSN suppress turning, whereas low activity levels facilitate turning. Using a generalized linear model, we explain how peripheral encoding of olfactory stimuli modulates the probability of switching from a run to a turn. Our work clarifies the link between computations carried out at the sensory periphery and action selection underlying navigation in odor gradients.

    View Publication Page