Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

46 Publications

Showing 1-10 of 46 results
Your Criteria:
    10/19/16 | A designer AAV variant permits efficient retrograde access to projection neurons.
    Tervo DG, Hwang B, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang C, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY
    Neuron. 2016 Oct 19;92(2):372-82. doi: 10.1016/j.neuron.2016.09.021

    Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.

    View Publication Page
    03/24/18 | A proposed circuit computation in basal ganglia: History-dependent gain.
    Yttri EA, Dudman JT
    Movement Disorders : official journal of the Movement Disorder Society. 2018 Mar 24:. doi: 10.1002/mds.27321

    In this Scientific Perspectives we first review the recent advances in our understanding of the functional architecture of basal ganglia circuits. Then we argue that these data can best be explained by a model in which basal ganglia act to control the gain of movement kinematics to shape performance based on prior experience, which we refer to as a history-dependent gain computation. Finally, we discuss how insights from the history-dependent gain model might translate from the bench to the bedside, primarily the implications for the design of adaptive deep brain stimulation. Thus, we explicate the key empirical and conceptual support for a normative, computational model with substantial explanatory power for the broad role of basal ganglia circuits in health and disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

    View Publication Page
    09/16/19 | A repeated molecular architecture across thalamic pathways.
    Phillips JW, Schulmann A, Hara E, Winnubst J, Liu C, Valakh V, Wang L, Shields BC, Korff W, Chandrashekar J, Lemire AL, Mensh B, Dudman JT, Nelson SB, Hantman AW
    Nature Neuroscience. 2019 Sep 16;22(11):1925-35. doi: 10.1038/s41593-019-0483-3

    The thalamus is the central communication hub of the forebrain and provides the cerebral cortex with inputs from sensory organs, subcortical systems and the cortex itself. Multiple thalamic regions send convergent information to each cortical region, but the organizational logic of thalamic projections has remained elusive. Through comprehensive transcriptional analyses of retrogradely labeled thalamic neurons in adult mice, we identify three major profiles of thalamic pathways. These profiles exist along a continuum that is repeated across all major projection systems, such as those for vision, motor control and cognition. The largest component of gene expression variation in the mouse thalamus is topographically organized, with features conserved in humans. Transcriptional differences between these thalamic neuronal identities are tied to cellular features that are critical for function, such as axonal morphology and membrane properties. Molecular profiling therefore reveals covariation in the properties of thalamic pathways serving all major input modalities and output targets, thus establishing a molecular framework for understanding the thalamus.

    View Publication Page
    12/06/07 | A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity.
    Dudman JT, Tsay D, Siegelbaum SA
    Neuron. 2007 Dec 6;56(5):866-79. doi: 10.1016/j.neuron.2007.10.020

    Synaptic potentials originating at distal dendritic locations are severely attenuated when they reach the soma and, thus, are poor at driving somatic spikes. Nonetheless, distal inputs convey essential information, suggesting that such inputs may be important for compartmentalized dendritic signaling. Here we report a new plasticity rule in which stimulation of distal perforant path inputs to hippocampal CA1 pyramidal neurons induces long-term potentiation at the CA1 proximal Schaffer collateral synapses when the two inputs are paired at a precise interval. This subthreshold form of heterosynaptic plasticity occurs in the absence of somatic spiking but requires activation of both NMDA receptors and IP(3) receptor-dependent release of Ca(2+) from internal stores. Our results suggest that direct sensory information arriving at distal CA1 synapses through the perforant path provide compartmentalized, instructive signals that assess the saliency of mnemonic information propagated through the hippocampal circuit to proximal synapses.

    View Publication Page
    07/22/15 | A specific component of the evoked potential mirrors phasic dopamine neuron activity during conditioning.
    Pan W, Dudman JT
    The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2015 Jul 22;35(29):10451-9. doi: 10.1523/JNEUROSCI.4096-14.2015

    UNLABELLED: Midbrain dopamine (DA) neurons are thought to be a critical node in the circuitry that mediates reward learning. DA neurons receive diverse inputs from regions distributed throughout the neuraxis from frontal neocortex to the mesencephalon. While a great deal is known about changes in the activity of individual DA neurons during learning, much less is known about the functional changes in the microcircuits in which DA neurons are embedded. Here we used local field potentials recorded from the midbrain of behaving mice to show that the midbrain evoked potential (mEP) faithfully reflects the temporal and spatial structure of the phasic response of midbrain neuron populations during conditioning. By comparing the mEP to simultaneously recorded single units, we identified specific components of the mEP that corresponded to phasic DA and non-DA responses to salient stimuli. The DA component of the mEP emerged with the acquisition of a conditioned stimulus, was extinguished following changes in reinforcement contingency, and could be inhibited by pharmacological manipulations that attenuate the phasic responses of DA neurons. In contrast to single-unit recordings, the mEP permitted relatively dense sampling of the midbrain circuit during conditioning and thus could be used to reveal the spatiotemporal structure of multiple intermingled midbrain circuits. Finally, the mEP response was stable for months and thus provides a new approach to study long-term changes in the organization of ventral midbrain microcircuits during learning.

    SIGNIFICANCE STATEMENT: Neurons that synthesize and release the neurotransmitter dopamine play a critical role in voluntary reward-seeking behavior. Much of our insight into the function of dopamine neurons comes from recordings of individual cells in behaving animals; however, it is notoriously difficult to record from dopamine neurons due to their sparsity and depth, as well as the presence of intermingled non-dopaminergic neurons. Here we show that much of the information that can be learned from recordings of individual dopamine and non-dopamine neurons is also revealed by changes in specific components of the local field potential. This technique provides an accessible measurement that could prove critical to our burgeoning understanding of the molecular, functional, and anatomical diversity of neuron populations in the midbrain.

    View Publication Page
    12/31/17 | A topographic axis of transcriptional identity in thalamus.
    Phillips JW, Schulman A, Hara E, Liu C, Shields BC, Korff W, Lemire A, Dudman JT, Nelson SB, Hantman AW
    bioRxiv. 2017 Dec 31:241315. doi: 10.1101/241315

    A fundamental goal in neuroscience is to uncover common principles by which different modalities of information are processed. In the mammalian brain, thalamus acts as the essential hub for forebrain circuits handling inputs from sensory, motor, limbic, and cognitive pathways. Whether thalamus imposes common transformations on each of these modalities is unknown. Molecular characterization offers a principled approach to revealing the organization of thalamus. Using near-comprehensive and projection-specific transcriptomic sequencing, we found that almost all thalamic nuclei fit into one of three profiles. These profiles lie on a single axis of genetic variance which is aligned with the mediolateral spatial axis of thalamus. Genes defining this axis of variance include receptors and ion channels, providing a systematic diversification of input/output transformations across the topography of thalamus. Single cell transcriptional profiling revealed graded heterogeneity within individual thalamic nuclei, demonstrating that a spectrum of cell types and potentially diverse input/output transforms exist within a given thalamic nucleus. Together, our data argue for an archetypal organization of pathways serving diverse input modalities, and provides a comprehensive organizational scheme for thalamus.

    View Publication Page
    05/01/05 | Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat.
    MacDonald ML, Eaton ME, Dudman JT, Konradi C
    Biological Psychiatry. 2005 May 1;57(9):1041-51. doi: 10.3389/fnana.2010.00147

    Molecular adaptations are believed to contribute to the mechanism of action of antipsychotic drugs (APDs). We attempted to establish common gene regulation patterns induced by chronic treatment with APDs.

    View Publication Page
    07/08/20 | Basal ganglia circuits for action specification.
    Park J, Coddington LT, Dudman JT
    Annual Review Neuroscience. 2020 Jul 8;43:485-507. doi: 10.1146/annurev-neuro-070918-050452

    Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace. Expected final online publication date for the , Volume 43 is July 8, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

    View Publication Page
    10/05/23 | Conjoint specification of action by neocortex and striatum.
    Junchol Park , Peter Polidoro , Catia Fortunato , Jon Arnold , Brett Mensh , Juan A. Gallego , Joshua T. Dudman
    bioRxiv. 2023 Oct 05:. doi: 10.1101/2023.10.04.560957

    The interplay between two major forebrain structures - cortex and subcortical striatum - is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated while the primary motor cortex is involved in the online control of movement execution. Recent data indicates that striatum may also be critical for specifying movement execution. These alternatives have been difficult to reconcile because when comparing very distinct actions, as in the vast majority of work to date, they make essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity during similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar, but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify flexible parameters of action during movement execution.

    View Publication Page
    04/07/17 | Deconstructing behavioral neuropharmacology with cellular specificity.
    Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR
    Science (New York, N.Y.). 2017 Apr 07;356(6333):. doi: 10.1126/science.aaj2161

    Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.

    View Publication Page