Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

2 Publications

Showing 1-2 of 2 results
Your Criteria:
    10/03/18 | High-performance GFP-based calcium indicators for imaging activity in neuronal populations and microcompartments.
    Dana H, Sun Y, Mohar B, Hulse B, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R, Macklin JJ, Chen Y, Konnerth A, Jayaraman V, Looger LL, Schreiter ER, Svoboda K, Kim DS
    bioRxiv. 2018 Oct 3:. doi: 10.1101/434589

    Calcium imaging with genetically encoded calcium indicators (GECIs) is routinely used to measure neural activity in intact nervous systems. GECIs are frequently used in one of two different modes: to track activity in large populations of neuronal cell bodies, or to follow dynamics in subcellular compartments such as axons, dendrites and individual synaptic compartments. Despite major advances, calcium imaging is still limited by the biophysical properties of existing GECIs, including affinity, signal-to-noise ratio, rise and decay kinetics, and dynamic range. Using structure-guided mutagenesis and neuron-based screening, we optimized the green fluorescent protein-based GECI GCaMP6 for different modes of in vivo imaging. The jGCaMP7 sensors provide improved detection of individual spikes (jGCaMP7s,f), imaging in neurites and neuropil (jGCaMP7b), and tracking large populations of neurons using 2-photon (jGCaMP7s,f) or wide-field (jGCaMP7c) imaging.

     

    View Publication Page
    10/11/18 | Thy1 transgenic mice expressing the red fluorescent calcium indicator jRGECO1a for neuronal population imaging in vivo.
    Dana H, Novak O, Guardado-Montesino M, Fransen JW, Hu A, Borghuis BG, Guo C, Kim DS, Svoboda K
    PloS One. 2018;13(10):e0205444. doi: 10.1371/journal.pone.0205444

    Calcium imaging is commonly used to measure the neural activity of large groups of neurons in mice. Genetically encoded calcium indicators (GECIs) can be delivered for this purpose using non-invasive genetic methods. Compared to viral gene transfer, transgenic targeting of GECIs provides stable long-term expression and obviates the need for invasive viral injections. Transgenic mice expressing the green GECI GCaMP6 are already widely used. Here we present the generation and characterization of transgenic mice expressing the sensitive red GECI jRGECO1a, driven by the Thy1 promoter. Four transgenic lines with different expression patterns showed sufficiently high expression for cellular in vivo imaging. We used two-photon microscopy to characterize visual responses of individual neurons in the visual cortex in vivo. The signal-to-noise ratio in transgenic mice was comparable to, or better than, mice transduced with adeno-associated virus. In addition, we show that Thy1-jRGECO1a transgenic mice are useful for transcranial population imaging and functional mapping using widefield fluorescence microscopy. We also demonstrate imaging of visual responses in retinal ganglion cells in vitro. Thy1-jRGECO1a transgenic mice are therefore a useful addition to the toolbox for imaging activity in intact neural networks.

    View Publication Page