Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

193 Publications

Showing 21-30 of 193 results
Your Criteria:
    Svoboda LabMouseLight
    11/12/21 | Accurate localization of linear probe electrodes across multiple brains.
    Liu LD, Chen S, Economo MN, Li N, Svoboda K
    eNeuro. 2021 Nov 12;8(6):ENEURO.0241-21.2021
    03/03/21 | Actin cables and comet tails organize mitochondrial networks in mitosis.
    Moore AS, Coscia SM, Simpson CL, Ortega FE, Wait EC, Heddleston JM, Nirschl JJ, Obara CJ, Guedes-Dias P, Boecker CA, Chew T, Theriot JA, Lippincott-Schwartz J, Holzbaur EL
    Nature. 2021 Mar 03;591(7851):659-664. doi: 10.1038/s41586-021-03309-5

    Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. Whereas the mechanisms coordinating the segregation of the genome are well known, the processes that ensure organelle segregation between daughter cells remain less well understood. Here we identify multiple actin assemblies with distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria during mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.

    View Publication Page
    05/08/21 | Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome
    Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan J, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN
    bioRxiv. 05/2021:. doi: 10.1101/2021.04.06.438745

    Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal excitation. In exploring the basis of these N-glycosylation alterations, we discovered they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed with neuronal excitation were in close association with ER exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway, or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction and disease.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    09/21/21 | Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome.
    Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan J, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN
    eLife. 2021 Sep 21;10:. doi: 10.7554/eLife.68910

    Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that -glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these -glycosylation alterations, we discovered they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with ER exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway, or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite's satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction and disease.

    View Publication Page
    02/27/21 | Acupuncture modulates immunity in sepsis: Toward a science-based protocol.
    Pan W, Fan AY, Chen S, Alemi SF
    Autonomic Neuroscience. 2021 Feb 27;232:102793. doi: 10.1016/j.autneu.2021.102793

    Sepsis is a serious medical condition in which immune dysfunction plays a key role. Previous treatments focused on chemotherapy to control immune function; however, a recognized effective compound or treatment has yet to be developed. Recent advances indicate that a neuromodulation approach with nerve stimulation allows developing a therapeutic strategy to control inflammation and improve organ functions in sepsis. As a quick, non-invasive technique of peripheral nerve stimulation, acupuncture has emerged as a promising therapy to provide significant advantages for immunomodulation in acute inflammation. Acupuncture obtains its regulatory effect by activating the somatic-autonomic-immune reflexes, including the somatic-sympathetic-splenic reflex, the somatic-sympathetic-adrenal reflex, the somatic-vagal-splenic reflex and the somatic-vagal-adrenal reflex, which produces a systemic effect. The peripheral nerve stimulation also induces local reflexes such as the somatic-sympathetic-lung-reflex, which then produces local effects. These mechanisms offer scientific guidance to design acupuncture protocols for immunomodulation and inflammation control, leading to an evidence-based comprehensive therapy recommendation.

    View Publication Page
    07/06/21 | Adhesion-mediated mechanosignaling forces mitohormesis.
    Tharp KM, Higuchi-Sanabria R, Timblin GA, Ford B, Garzon-Coral C, Schneider C, Muncie JM, Stashko C, Daniele JR, Moore AS, Frankino PA, Homentcovschi S, Manoli SS, Shao H, Richards AL, Chen K, Hoeve JT, Ku GM, Hellerstein M, Nomura DK, Saijo K, Gestwicki J, Dunn AR, Krogan NJ, Swaney DL, Dillin A, Weaver VM
    Cell Metabolism. 2021 July 6;33(7):1322. doi: 10.1016/j.cmet.2021.04.017

    Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.

    View Publication Page
    05/28/21 | Advances in Confocal Microscopy and Selected Applications.
    Reilly WM, Obara CJ
    Methods in Molecular Biology. 2021 May 28;2304:1-35. doi: 10.1007/978-1-0716-1402-0_1

    Over the last 30 years, confocal microscopy has emerged as a primary tool for biological investigation across many disciplines. The simplicity of use and widespread accessibility of confocal microscopy ensure that it will have a prominent place in biological imaging for many years to come, even with the recent advances in light sheet and field synthesis microscopy. Since these more advanced technologies still require significant expertise to effectively implement and carry through to analysis, confocal microscopy-based approaches still remain the easiest way for biologists with minimal imaging experience to address fundamental questions about how their systems are arranged through space and time. In this review, we discuss a number of advanced applications of confocal microscopy for probing the spatiotemporal dynamics of biological systems.

    View Publication Page
    05/15/21 | Algorithms underlying flexible phototaxis in larval zebrafish.
    Chen AB, Deb D, Bahl A, Engert F
    Journal of Experimental Biology. 2021 May 15;224(10):. doi: 10.1242/jeb.238386

    To thrive, organisms must maintain physiological and environmental variables in suitable ranges. Given that these variables undergo constant fluctuations over varying time scales, how do biological control systems maintain control over these values? We explored this question in the context of phototactic behavior in larval zebrafish. We demonstrate that larval zebrafish use phototaxis to maintain environmental luminance at a set point, that the value of this set point fluctuates on a time scale of seconds when environmental luminance changes, and that it is determined by calculating the mean input across both sides of the visual field. These results expand on previous studies of flexible phototaxis in larval zebrafish; they suggest that larval zebrafish exert homeostatic control over the luminance of their surroundings, and that feedback from the surroundings drives allostatic changes to the luminance set point. As such, we describe a novel behavioral algorithm with which larval zebrafish exert control over a sensory variable.

    View Publication Page
    06/11/21 | Alpha-1 adrenergic receptor antagonists to prevent hyperinflammation and death from lower respiratory tract infection.
    Koenecke A, Powell M, Xiong R, Shen Z, Fischer N, Huq S, Khalafallah AM, Trevisan M, Sparen P, Carrero JJ, Nishimura A, Caffo B, Stuart EA, Bai R, Staedtke V, Thomas DL, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S, Bettegowda C, Konig MF, Mensh BD, Vogelstein JT, Athey S
    eLife. 2021 Jun 11;10:. doi: 10.7554/eLife.61700

    In severe viral pneumonia, including Coronavirus disease 2019 (COVID-19), the viral replication phase is often followed by hyperinflammation, which can lead to acute respiratory distress syndrome, multi-organ failure, and death. We previously demonstrated that alpha-1 adrenergic receptor (⍺-AR) antagonists can prevent hyperinflammation and death in mice. Here, we conducted retrospective analyses in two cohorts of patients with acute respiratory distress (ARD, n = 18,547) and three cohorts with pneumonia (n = 400,907). Federated across two ARD cohorts, we find that patients exposed to ⍺-AR antagonists, as compared to unexposed patients, had a 34% relative risk reduction for mechanical ventilation and death (OR = 0.70, p = 0.021). We replicated these methods on three pneumonia cohorts, all with similar effects on both outcomes. All results were robust to sensitivity analyses. These results highlight the urgent need for prospective trials testing whether prophylactic use of ⍺-AR antagonists ameliorates lower respiratory tract infection-associated hyperinflammation and death, as observed in COVID-19.

    View Publication Page
    05/26/21 | An Accumulation-of-Evidence Task Using Visual Pulses for Mice Navigating in Virtual Reality
    Pinto L, Koay SA, Engelhard B, Yoon AM, Deverett B, Thiberge SY, Witten IB, Tank DW, Brody CD
    Frontiers in Behavioral Neuroscience. Jun-03-2018;12:. doi: 10.3389/fnbeh.2018.00036

    The gradual accumulation of sensory evidence is a crucial component of perceptual decision making, but its neural mechanisms are still poorly understood. Given the wide availability of genetic and optical tools for mice, they can be useful model organisms for the study of these phenomena; however, behavioral tools are largely lacking. Here, we describe a new evidence-accumulation task for head-fixed mice navigating in a virtual reality (VR) environment. As they navigate down the stem of a virtual T-maze, they see brief pulses of visual evidence on either side, and retrieve a reward on the arm with the highest number of pulses. The pulses occur randomly with Poisson statistics, yielding a diverse yet well-controlled stimulus set, making the data conducive to a variety of computational approaches. A large number of mice of different genotypes were able to learn and consistently perform the task, at levels similar to rats in analogous tasks. They are sensitive to side differences of a single pulse, and their memory of the cues is stable over time. Moreover, using non-parametric as well as modeling approaches, we show that the mice indeed accumulate evidence: they use multiple pulses of evidence from throughout the cue region of the maze to make their decision, albeit with a small overweighting of earlier cues, and their performance is affected by the magnitude but not the duration of evidence. Additionally, analysis of the mice's running patterns revealed that trajectories are fairly stereotyped yet modulated by the amount of sensory evidence, suggesting that the navigational component of this task may provide a continuous readout correlated to the underlying cognitive variables. Our task, which can be readily integrated with state-of-the-art techniques, is thus a valuable tool to study the circuit mechanisms and dynamics underlying perceptual decision making, particularly under more complex behavioral contexts.

     
     
     

    View Publication Page