Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

128 Publications

Showing 51-60 of 128 results
Your Criteria:
    02/21/24 | Epigenetic repression of cFos supports sequential formation of distinct spatial memories.
    Andreas Franzelin , Paul J. Lamothe-Molina , Christine E. Gee , Andrey Formozov , Eric R Schreiter , Fabio Morellini , Thomas Glenn Oertner
    bioRxiv. 2024 Feb 21:. doi: 10.1101/2024.02.16.580703

    Expression of the immediate early gene cFos modifies the epigenetic landscape of activated neurons with downstream effects on synaptic plasticity. The production of cFos is inhibited by a long-lived isoform of another Fos family gene, ΔFosB. It has been speculated that this negative feedback mechanism may be critical for protecting episodic memories from being overwritten by new information. Here, we investigate the influence of ΔFosB inhibition on cFos expression and memory. Hippocampal neurons in slice culture produce more cFos on the first day of stimulation compared to identical stimulation on the following day. This downregulation affects all hippocampal subfields and requires histone deacetylation. Overexpression of ΔFosB in individual pyramidal neurons effectively suppresses cFos, indicating that accumulation of ΔFosB is the causal mechanism. Water maze training of mice over several days leads to accumulation of ΔFosB in granule cells of the dentate gyrus, but not in CA3 and CA1. Because the dentate gyrus is thought to support pattern separation and cognitive flexibility, we hypothesized that inhibiting the expression of ΔFosB would affect reversal learning, i.e., the ability to successively learn new platform locations in the water maze. The results indicate that pharmacological HDAC inhibition, which prevents cFos repression, impairs reversal learning, while learning and memory of the initial platform location remain unaffected. Our study supports the hypothesis that epigenetic mechanisms tightly regulate cFos expression in individual granule cells to orchestrate the formation of time-stamped memories.

    View Publication Page
    03/25/24 | Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye
    Giancola JB, Grimm JB, Jun JV, Petri YD, Lavis LD, Raines RT
    ACS Chemical Biology. 2024 Mar 25:. doi: 10.1021/acschembio.3c0071310.1021/acschembio.3c00713.s001

    The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.

    View Publication Page
    04/25/24 | Expansion of in vitro Toxoplasma gondii cysts using enzymatically enhanced ultrastructure expansion microscopy
    Kseniia Bondarenko , Floriane Limoge , Kayvon Pedram , Mathieu Gissot , Joanna C. Young
    bioRxiv. 2024 Apr 25:. doi: 10.1101/2024.04.24.590991

    Expansion microscopy (ExM) is an innovative approach to achieve super-resolution images without using super-resolution microscopes, based on the physical expansion of the sample. The advent of ExM has unlocked super-resolution imaging for a broader scientific circle, lowering the cost and entry skill requirements to the field. One of its branches, ultrastructure ExM (U-ExM), has become popular among research groups studying Apicomplexan parasites, including the acute stage of Toxoplasma gondii infection. The chronic cyst-forming stage of Toxoplasma, however, resists U-ExM expansion, impeding precise protein localisation. Here, we solve the in vitro cyst’s resistance to denaturation required for successful U-ExM of the encapsulated parasites. As the cyst’s main structural protein CST1 contains a mucin domain, we added an enzymatic digestion step using the pan-mucinase StcE prior to the expansion protocol. This allowed full expansion of the cysts in fibroblasts and primary neuronal cell culture without interference with the epitopes of the cyst-wall associated proteins. Using StcE-enhanced U-ExM, we clarified the shape and location of the GRA2 protein important for establishing a normal cyst. Expanded cysts revealed GRA2 granules spanning across the cyst wall, with a notable presence observed outside on both sides of the CST1-positive layer.

    Importance Toxoplasma gondii is an intracellular parasite capable of establishing long-term chronic infection in nearly all warm-blooded animals. During the chronic stage, parasites encapsulate into cysts in a wide range of tissues but particularly in neurons of the central nervous system and in skeletal muscle. Current anti-Toxoplasma drugs do not eradicate chronic parasites and leave behind a reservoir of infection. As the cyst is critical for both transmission and pathology of the disease, we need to understand more fully the biology of the cyst and its vulnerabilities.

    The advent of a new super-resolution approach called ultrastructure expansion microscopy allowed in-depth studies of the acute stage of Toxoplasma infection but not the cyst-forming stage, which resists protocol-specific denaturation. Here, we show that an additional step of enzymatic digestion using mucinase StcE allows full expansion of the Toxoplasma cysts, offering a new avenue for a comprehensive examination of the chronic stage of infection using an accessible super-resolution technique.

    View Publication Page
    01/18/24 | Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor neurons.
    Ryvkin J, Omesi L, Kim Y, Levi M, Pozeilov H, Barak-Buchris L, Agranovich B, Abramovich I, Gottlieb E, Jacob A, Nässel DR, Heberlein U, Shohat-Ophir G
    PLoS Genetics. 2024 Jan 18;20(1):e1011054. doi: 10.1371/journal.pgen.1011054

    Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.

    View Publication Page
    05/07/24 | Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals
    Xuelong Mi , Alex Bo-Yuan Chen , Daniela Duarte , Erin Carey , Charlotte R. Taylor , Philipp N. Braaker , Mark Bright , Rafael G. Almeida , Jing-Xuan Lim , Virginia M. Rutten , Wei Zheng , Mengfan Wang , Michael E. Reitman , Yizhi Wang , Kira E. Poskanzer , David A. Lyons , Axel Nimmerjahn , Misha B. Ahrens , Guoqiang Yu
    bioRxiv. 2024 May 07:. doi: 10.1101/2024.05.02.592259

    Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful patterns embedded within complex and rich data sources. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a range of biosensors (calcium, norepinephrine, ATP, acetylcholine, dopamine), cell types (astrocytes, oligodendrocytes, microglia, neurons), organs (brains and spinal cords), animal models (zebrafish and mouse), and imaging modalities (confocal, two-photon, light sheet). As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.

    View Publication Page
    02/21/24 | Fluorescence complementation-based FRET imaging reveals centromere assembly dynamics.
    Dou Z, Liu R, Gui P, Fu C, Lippincott-Schwartz J, Yao X, Liu X
    Molecular Biology of the Cell. 2024 Feb 21:mbcE23090379. doi: 10.1091/mbc.E23-09-0379

    Visualization of specific molecules and their assembly in real time and space is essential to delineate how cellular dynamics and signaling circuit are orchestrated during cell division cycle. Our recent studies reveal structural insights into human centromere-kinetochore core CCAN complex. Here we introduce a method for optically imaging trimeric and tetrameric protein interactions at nanometer spatial resolution in live cells using fluorescence complementation-based Förster resonance energy transfer (FC-FRET). Complementary fluorescent protein molecules were first used to visualize dimerization followed by FRET measurements. Using FC- FRET, we visualized centromere CENP-SXTW tetramer assembly dynamics in live cells, and dimeric interactions between CENP-TW dimer and kinetochore protein Spc24/25 dimer in dividing cells. We further delineated the interactions of monomeric CENP-T with Spc24/25 dimer in dividing cells. Surprisingly, our analyses revealed critical role of CDK1 kinase activity in the initial recruitment of Spc24/25 by CENP-T. However, interactions between CENP-T and Spc24/25 during chromosome segregation is independent of CDK1. Thus, FC-FRET provides a unique approach to delineate spatiotemporal dynamics of trimerized and tetramerized proteins at nanometer scale and establishes a platform to report the precise regulation of multimeric protein interactions in space and time in live cells.

    View Publication Page
    03/21/24 | Focal adhesions contain three specialized actin nanoscale layers
    Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew T, Gunning PW, Ivaska J, Lappalainen P
    Nature Communications. 2024 Mar 21;15(1):. doi: 10.1038/s41467-024-46868-7

    Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.

    View Publication Page
    05/20/24 | Four-dimensional quantitative analysis of cell plate development in Arabidopsis using lattice light sheet microscopy identifies robust transition points between growth phases
    Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G
    J Exp Bot. 2024 May 20;75(10):2829-2847. doi: 10.1093/jxb/erae091

    Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.

    View Publication Page
    Integrative Imaging
    03/04/24 | Four-dimensional quantitative analysis of cell plate development using lattice light sheet microscopy identifies robust transition points between growth phases.
    Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G
    Journal of Experimental Botany. 2024 Mar 4:. doi: 10.1093/jxb/erae091

    Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodeling, and timely polysaccharide deposition, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM) we studied cell plate development in four dimensions, through the behavior of the cytokinesis specific GTPase YFP-RABA2a vesicles. We monitored the entire length of cell plate development, from its first emergence, with the aid of YFP-RABA2a, both in the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable, cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.

    View Publication Page
    02/27/24 | Haploidy-linked cell proliferation defects limit larval growth in Zebrafish
    Kan Yaguchi , Daiki Saito , Triveni Menon , Akira Matsura , Takeomi Mizutani , Tomoya Kotani , Sreelaja Nair , Ryota Uehara
    bioRxiv. 2024 Feb 27:. doi: 10.1101/2022.05.12.491746

    Haploid larvae in non-mammalian vertebrates are lethal with characteristic organ growth retardation collectively called “haploid syndrome.” In contrast to mammals whose haploid intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-linked defects in non-mammalian vertebrates remains unknown. Here, we investigated cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike diploid control, haploid larvae manifested unscheduled cell death at the organogenesis stage, attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-3 days post fertilization, causing spindle assembly checkpoint-mediated mitotic arrest throughout the entire body. High-resolution imaging revealed that this mitotic defect accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 significantly improved organ growth in haploid larvae. Based on these results, we propose that haploidy-linked mitotic defects and cell death are critical cellular causes that limit the larval growth in the haploid state, potentially placing an evolutionary constraint on allowable ploidy status in the non-mammalian vertebrate life cycle.

    View Publication Page