Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

64 Publications

Showing 51-60 of 64 results
Your Criteria:
    Tjian Lab
    09/01/07 | Switching of the core transcription machinery during myogenesis.
    Deato MD, Tjian R
    Genes & Development. 2007 Sep 1;21(17):2137-49. doi: 10.1073/pnas.1100640108

    Transcriptional mechanisms that govern cellular differentiation typically include sequence-specific DNA-binding proteins and chromatin-modifying activities. These regulatory factors are assumed necessary and sufficient to drive both divergent programs of proliferation and terminal differentiation. By contrast, potential contributions of the basal transcriptional apparatus to orchestrate cell-specific gene expression have been poorly explored. In order to probe alternative mechanisms that control differentiation, we have assessed the fate of the core promoter recognition complex, TFIID, during skeletal myogenesis. Here we report that differentiation of myoblast to myotubes involves the disruption of the canonical holo-TFIID and replacement by a novel TRF3/TAF3 (TBP-related factor 3/TATA-binding protein-associated factor 3) complex. This required switching of core promoter complexes provides organisms a simple yet effective means to selectively turn on one transcriptional program while silencing many others. Although this drastic but parsimonious transcriptional switch had previously escaped our attention, it may represent a more general mechanism for regulating cell type-specific terminal differentiation.

    View Publication Page
    Tjian Lab
    08/15/06 | TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter.
    Wright KJ, Marr MT, Tjian R
    Proceedings of the National Academy of Sciences of the United States of America. 2006 Aug 15;103(33):12347-52. doi: 10.1073/pnas.1100640108

    Activator-dependent recruitment of TFIID initiates formation of the transcriptional preinitiation complex. TFIID binds core promoter DNA elements and directs the assembly of other general transcription factors, leading to binding of RNA polymerase II and activation of RNA synthesis. How TATA box-binding protein (TBP) and the TBP-associated factors (TAFs) are assembled into a functional TFIID complex with promoter recognition and coactivator activities in vivo remains unknown. Here, we use RNAi to knock down specific TFIID subunits in Drosophila tissue culture cells to determine which subunits are most critical for maintaining stability of TFIID in vivo. Contrary to expectations, we find that TAF4 rather than TBP or TAF1 plays the most critical role in maintaining stability of the complex. Our analysis also indicates that TAF5, TAF6, TAF9, and TAF12 play key roles in stability of the complex, whereas TBP, TAF1, TAF2, and TAF11 contribute very little to complex stability. Based on our results, we propose that holo-TFIID comprises a stable core subcomplex containing TAF4, TAF5, TAF6, TAF9, and TAF12 decorated with peripheral subunits TAF1, TAF2, TAF11, and TBP. Our initial functional studies indicate a specific and significant role for TAF1 and TAF4 in mediating transcription from a TATA-less, downstream core promoter element (DPE)-containing promoter, whereas a TATA-containing, DPE-less promoter was far less dependent on these subunits. In contrast to both TAF1 and TAF4, RNAi knockdown of TAF5 had little effect on transcription from either class of promoter. These studies significantly alter previous models for the assembly, structure, and function of TFIID.

    View Publication Page
    Tjian Lab
    06/01/03 | Targeting genes and transcription factors to segregated nuclear compartments.
    Isogai Y, Tjian R
    Current Opinion in Cell Biology. 2003 Jun;15(3):296-303. doi: 10.1073/pnas.1100640108

    With increasingly detailed images of nuclear structures revealed by advanced microscopy, a remarkably compartmentalized cell nucleus has come into focus. Although this complex nuclear organization remains largely unexplored, some progress has been made in deciphering the functional aspects of various subnuclear structures, revealing how this elaborate framework can influence gene activation. Several recent studies have helped illustrate how cells might utilize the nuclear architecture as an additional level of transcriptional control, perhaps by targeting genes and regulatory factors to specific sites within the nucleus that are designated for active RNA synthesis.

    View Publication Page
    Tjian Lab
    09/01/08 | TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription.
    Hsu J, Juven-Gershon T, Marr MT, Wright KJ, Tjian R, Kadonaga JT
    Genes & Development. 2008 Sep 1;22(17):2353-8. doi: 10.1073/pnas.1100640108

    The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional module. RNAi depletion and overexpression experiments revealed a genetic circuit that controls the balance of transcription from two core promoter motifs, the TATA box and the downstream core promoter element (DPE). In this circuit, TBP activates TATA-dependent transcription and represses DPE-dependent transcription, whereas Mot1 and NC2 block TBP function and thus repress TATA-dependent transcription and activate DPE-dependent transcription. This regulatory circuit is likely to be one means by which biological networks can transmit transcriptional signals, such as those from DPE-specific and TATA-specific enhancers, via distinct pathways.

    View Publication Page
    Tjian LabRubin Lab
    07/15/94 | The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway.
    O’Neill EM, Rebay I, Tjian R, Rubin GM
    Cell. 1994 Jul 15;78(1):137-47. doi: 10.1186/gb-2007-8-7-r145

    We show that the activities of two Ets-related transcription factors required for normal eye development in Drosophila, pointed and yan, are regulated by the Ras1/MAPK pathway. The pointed gene codes for two related proteins, and we show that one form is a constitutive activator of transcription, while the activity of the other form is stimulated by the Ras1/MAPK pathway. Mutation of the single consensus MAPK phosphorylation site in the second form abrogates this responsiveness. yan is a negative regulator of photoreceptor determination, and genetic data suggest that it acts as an antagonist of Ras1. We demonstrate that yan can repress transcription and that this repression activity is negatively regulated by the Ras1/MAPK signal, most likely through direct phosphorylation of yan by MAPK.

    View Publication Page
    Tjian Lab
    10/09/08 | The future for Howard Hughes. Interview by Erika Check Hayden.
    Tjian R
    Nature. 2008 Oct 9;455(7214):718. doi: 10.1073/pnas.1100640108
    Tjian LabWu Lab
    04/15/08 | The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity.
    Kwon SY, Xiao H, Glover BP, Tjian R, Wu C, Badenhorst P
    Developmental Biology. 2008 Apr 15;316(2):538-47. doi: 10.1073/pnas.1100640108

    The Drosophila nucleosome remodeling factor (NURF) is an ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF has the ability to alter chromatin structure and regulate transcription. Previous studies have shown that mutation of Drosophila NURF induces melanotic tumors, implicating NURF in innate immune function. Here, we show that NURF mutants exhibit identical innate immune responses to gain-of-function mutants in the Drosophila JAK/STAT pathway. Using microarrays, we identify a common set of target genes that are activated in both mutants. In silico analysis of promoter sequences of these defines a consensus regulatory element comprising a STAT-binding sequence overlapped by a binding-site for the transcriptional repressor Ken. NURF interacts physically and genetically with Ken. Chromatin immunoprecipitation (ChIP) localizes NURF to Ken-binding sites in hemocytes, suggesting that Ken recruits NURF to repress STAT responders. Loss of NURF leads to precocious activation of STAT target genes.

    View Publication Page
    Tjian Lab
    08/01/12 | Transcription initiation by human RNA polymerase II visualized at single-molecule resolution.
    Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, Park S, Chu S, Tjian R
    Genes & Development. 2012 Aug 1;26:1691-702. doi: 10.1101/gad.194936.112

    Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy. We detected several stochastic rounds of human Pol II transcription from individual DNA templates, observed attenuation of transcription by promoter mutations, observed enhancement of transcription by activator Sp1, and correlated the transcription signals with real-time interactions of holo-TFIID molecules at individual DNA templates. This integrated single-molecule methodology should be applicable to studying other complex biological processes.

    View Publication Page
    Tjian Lab
    11/15/07 | Transcription of histone gene cluster by differential core-promoter factors.
    Isogai Y, Keles S, Prestel M, Hochheimer A, Tjian R
    Genes & Development. 2007 Nov 15;21(22):2936-49. doi: 10.1073/pnas.1100640108

    The 100 copies of tandemly arrayed Drosophila linker (H1) and core (H2A/B and H3/H4) histone gene cluster are coordinately regulated during the cell cycle. However, the molecular mechanisms that must allow differential transcription of linker versus core histones prevalent during development remain elusive. Here, we used fluorescence imaging, biochemistry, and genetics to show that TBP (TATA-box-binding protein)-related factor 2 (TRF2) selectively regulates the TATA-less Histone H1 gene promoter, while TBP/TFIID targets core histone transcription. Importantly, TRF2-depleted polytene chromosomes display severe chromosomal structural defects. This selective usage of TRF2 and TBP provides a novel mechanism to differentially direct transcription within the histone cluster. Moreover, genome-wide chromatin immunoprecipitation (ChIP)-on-chip analyses coupled with RNA interference (RNAi)-mediated functional studies revealed that TRF2 targets several classes of TATA-less promoters of >1000 genes including those driving transcription of essential chromatin organization and protein synthesis genes. Our studies establish that TRF2 promoter recognition complexes play a significantly more central role in governing metazoan transcription than previously appreciated.

    View Publication Page
    Tjian Lab
    07/10/03 | Transcription regulation and animal diversity.
    Levine M, Tjian R
    Nature. 2003 Jul 10;424:147-51. doi: 10.1073/pnas.1100640108

    Whole-genome sequence assemblies are now available for seven different animals, including nematode worms, mice and humans. Comparative genome analyses reveal a surprising constancy in genetic content: vertebrate genomes have only about twice the number of genes that invertebrate genomes have, and the increase is primarily due to the duplication of existing genes rather than the invention of new ones. How, then, has evolutionary diversity arisen? Emerging evidence suggests that organismal complexity arises from progressively more elaborate regulation of gene expression.

    View Publication Page