Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

100 Publications

Showing 81-90 of 100 results
Your Criteria:
    05/30/08 | Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ, Barends TR, Worm P, Akerboom J, Turnbull AP, Salmon L, van der Oost J
    Journal of Molecular Biology. 2008 May 30;379:357-71. doi: 10.1016/j.jmb.2008.03.064

    The archaeon Sulfolobus solfataricus converts d-arabinose to 2-oxoglutarate by an enzyme set consisting of two dehydrogenases and two dehydratases. The third step of the pathway is catalyzed by a novel 2-keto-3-deoxy-D-arabinonate dehydratase (KdaD). In this study, the crystal structure of the enzyme has been solved to 2.1 A resolution. The enzyme forms an oval-shaped ring of four subunits, each consisting of an N-terminal domain with a four-stranded beta-sheet flanked by two alpha-helices, and a C-terminal catalytic domain with a fumarylacetoacetate hydrolase (FAH) fold. Crystal structures of complexes of the enzyme with magnesium or calcium ions and either a substrate analog 2-oxobutyrate, or the aldehyde enzyme product 2,5-dioxopentanoate revealed that the divalent metal ion in the active site is coordinated octahedrally by three conserved carboxylate residues, a water molecule, and both the carboxylate and the oxo groups of the substrate molecule. An enzymatic mechanism for base-catalyzed dehydration is proposed on the basis of the binding mode of the substrate to the metal ion, which suggests that the enzyme enhances the acidity of the protons alpha to the carbonyl group, facilitating their abstraction by glutamate 114. A comprehensive structural comparison of members of the FAH superfamily is presented and their evolution is discussed, providing a basis for functional investigations of this largely unexplored protein superfamily.

    View Publication Page
    07/15/08 | Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator.
    Fiolka R, Beck M, Stemmer A
    Optics Letters. 2008 Jul 15;33(14):1629-31

    In wide-field fluorescence microscopy, illuminating the specimen with evanescent standing waves increases lateral resolution more than twofold. We report a versatile setup for standing-wave illumination in total internal reflection fluorescence microscopy. An adjustable diffraction grating written on a phase-only spatial light modulator controls the illumination field. Selecting appropriate diffraction orders and displaying a sheared (tilted) diffraction grating allows one to tune the penetration depth in very fine steps. The setup achieves 91 nm lateral resolution for green emission.

    View Publication Page
    06/06/08 | Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy.
    Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW
    Science. 2008 Jun 6;320(5881):1332-6. doi: 10.1126/science.1156947

    Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.

    View Publication Page
    05/01/08 | Super-resolution light microscopy goes live.
    Gustafsson MG
    Nature Methods. 2008 May;5(5):385-7. doi: 10.1038/nmeth0508-385

    Microscopic resolution far beyond the diffraction limit is possible by localizing single molecules individually. This approach has now been demonstrated on living cells.

    View Publication Page
    Tjian Lab
    09/01/08 | TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription.
    Hsu J, Juven-Gershon T, Marr MT, Wright KJ, Tjian R, Kadonaga JT
    Genes & Development. 2008 Sep 1;22(17):2353-8. doi: 10.1073/pnas.1100640108

    The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional module. RNAi depletion and overexpression experiments revealed a genetic circuit that controls the balance of transcription from two core promoter motifs, the TATA box and the downstream core promoter element (DPE). In this circuit, TBP activates TATA-dependent transcription and represses DPE-dependent transcription, whereas Mot1 and NC2 block TBP function and thus repress TATA-dependent transcription and activate DPE-dependent transcription. This regulatory circuit is likely to be one means by which biological networks can transmit transcriptional signals, such as those from DPE-specific and TATA-specific enhancers, via distinct pathways.

    View Publication Page
    Tjian Lab
    10/09/08 | The future for Howard Hughes. Interview by Erika Check Hayden.
    Tjian R
    Nature. 2008 Oct 9;455(7214):718. doi: 10.1073/pnas.1100640108
    09/01/08 | The loci of evolution: how predictable is genetic evolution?
    Stern DL, Orgogozo V
    Evolution. 2008 Sep;62(9):2155-77. doi: 10.1111/j.1558-5646.2008.00450.x

    Is genetic evolution predictable? Evolutionary developmental biologists have argued that, at least for morphological traits, the answer is a resounding yes. Most mutations causing morphological variation are expected to reside in the cis-regulatory, rather than the coding, regions of developmental genes. This "cis-regulatory hypothesis" has recently come under attack. In this review, we first describe and critique the arguments that have been proposed in support of the cis-regulatory hypothesis. We then test the empirical support for the cis-regulatory hypothesis with a comprehensive survey of mutations responsible for phenotypic evolution in multicellular organisms. Cis-regulatory mutations currently represent approximately 22% of 331 identified genetic changes although the number of cis-regulatory changes published annually is rapidly increasing. Above the species level, cis-regulatory mutations altering morphology are more common than coding changes. Also, above the species level cis-regulatory mutations predominate for genes not involved in terminal differentiation. These patterns imply that the simple question "Do coding or cis-regulatory mutations cause more phenotypic evolution?" hides more interesting phenomena. Evolution in different kinds of populations and over different durations may result in selection of different kinds of mutations. Predicting the genetic basis of evolution requires a comprehensive synthesis of molecular developmental biology and population genetics.

    View Publication Page
    Tjian LabWu Lab
    04/15/08 | The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity.
    Kwon SY, Xiao H, Glover BP, Tjian R, Wu C, Badenhorst P
    Developmental Biology. 2008 Apr 15;316(2):538-47. doi: 10.1073/pnas.1100640108

    The Drosophila nucleosome remodeling factor (NURF) is an ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF has the ability to alter chromatin structure and regulate transcription. Previous studies have shown that mutation of Drosophila NURF induces melanotic tumors, implicating NURF in innate immune function. Here, we show that NURF mutants exhibit identical innate immune responses to gain-of-function mutants in the Drosophila JAK/STAT pathway. Using microarrays, we identify a common set of target genes that are activated in both mutants. In silico analysis of promoter sequences of these defines a consensus regulatory element comprising a STAT-binding sequence overlapped by a binding-site for the transcriptional repressor Ken. NURF interacts physically and genetically with Ken. Chromatin immunoprecipitation (ChIP) localizes NURF to Ken-binding sites in hemocytes, suggesting that Ken recruits NURF to repress STAT responders. Loss of NURF leads to precocious activation of STAT target genes.

    View Publication Page
    Truman LabRiddiford Lab
    02/01/08 | The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa.
    Suzuki Y, Truman JW, Riddiford LM
    Development (Cambridge, England). 2008 Feb;135(3):569-77. doi: 10.1242/dev.015263

    The evolution of complete metamorphosis in insects is a key innovation that has led to the successful diversification of holometabolous insects, yet the origin of the pupa remains an enigma. Here, we analyzed the expression of the pupal specifier gene broad (br), and the effect on br of isoform-specific, double-stranded RNA-mediated silencing, in a basal holometabolous insect, the beetle Tribolium castaneum. All five isoforms are weakly expressed during the penultimate instar and highly expressed during the prepupal period of the final instar. Application of hydroprene, a juvenile hormone analog, during the penultimate instar caused a repeat of the penultimate br expression patterns, and the formation of supernumerary larvae. Use of dsRNA against the br core region, or against a pair of either the br-Z2 or br-Z3 isoform with the br-Z1 or br-Z4 isoform, produced mobile animals with well-differentiated adult-like appendages, but which retained larval-like urogomphi and epidermis. Disruption of either the br-Z2 or the br-Z3 isoform caused the formation of shorter wings. Disruption of both br-Z1 and br-Z4 caused the appearance of pupal traits in the adults, but disruption of br-Z5 had no morphological effect. Our findings show that the br isoform functions are broadly conserved within the Holometabola and suggest that evolution of br isoform expression may have played an important role in the evolution of the pupa in holometabolous insects.

    View Publication Page
    Pastalkova Lab
    06/04/08 | Theta-mediated dynamics of spatial information in hippocampus.
    Itskov V, Pastalkova E, Mizuseki K, Buzsáki G, Harris KD
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2008 Jun 4;28(23):5959-64. doi: 10.1523/JNEUROSCI.3773-10.2011

    In rodent hippocampus, neuronal activity is organized by a 6-10 Hz theta oscillation. The spike timing of hippocampal pyramidal cells with respect to the theta rhythm correlates with an animal’s position in space. This correlation has been suggested to indicate an explicit temporal code for position. Alternatively, it may be interpreted as a byproduct of theta-dependent dynamics of spatial information flow in hippocampus. Here we show that place cell activity on different phases of theta reflects positions shifted into the future or past along the animal’s trajectory in a two-dimensional environment. The phases encoding future and past positions are consistent across recorded CA1 place cells, indicating a coherent representation at the network level. Consistent theta-dependent time offsets are not simply a consequence of phase-position correlation (phase precession), because they are no longer seen after data randomization that preserves the phase-position relationship. The scale of these time offsets, 100-300 ms, is similar to the latencies of hippocampal activity after sensory input and before motor output, suggesting that offset activity may maintain coherent brain activity in the face of information processing delays.

    View Publication Page